Skip to main content
Book cover

Gout pp 25–67Cite as

Purine Biochemistry

  • Chapter
  • First Online:

Abstract

The origin of uric acid in the body is reviewed, both from exogenous sources, degradation of purine precursors, and de novo purine synthesis. The pathways of the biosynthesis of purines in the body are reviewed, and regulatory enzyme abnormalities which may lead to overproduction of uric acid are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Colowick SP, Kaplan NO. Methods in enzymology, vol. 6. New York: Academic; 1963.

    Google Scholar 

  2. Chargaff E, Davidson JN. The nucleic acids, vol. 3. New York: Academic; 1963.

    Google Scholar 

  3. Kelley WN, Weiner IM, editors. Uric acid. Berlin: Springer; 1978.

    Google Scholar 

  4. Elliott K, Fitzsimons DW, editors. Purine and pyrimidine metabolism, Ciba Foundation symposium 48. Amsterdam: Elsevier; 1977.

    Google Scholar 

  5. Rosenbloom FM, Henderson JF, Caldwell JC, Kelley WN, Seegmiller JE. Biochemical bases of accelerated purine biosynthesis de novo in human fibroblasts lacking hypoxanthine-guanine phosphoribosyltransferase. J Biol Chem. 1968;243:1166.

    PubMed  CAS  Google Scholar 

  6. Sidi Y, Mitchell BS. Z-nucleotide accumulation in erythrocytes from Lesch-Nyhan patients. J Clin Invest. 1985;76:2416.

    PubMed  CAS  Google Scholar 

  7. Newcombe DS, Lapes M, Thomson C, Wright EY. Urinary excretion of 4-amino-5-imidazolecarboxamide in X-linked primary hyperuricemia. Clin Res. 1967;15:45.

    Google Scholar 

  8. Fox IH, Kelley WN. The role of adenosine and deoxyadenosine in mammalian cells. Annu Rev Biochem. 1978;47:655.

    PubMed  CAS  Google Scholar 

  9. Becker MA, Meyer LJ, Huisman WH, Lazar C, Adams WB. Human erythrocyte phosphoribosylpyrophosphate synthetase: subunit analysis and states of subunit association. J Biol Chem. 1977;252:3911.

    PubMed  CAS  Google Scholar 

  10. Meyer LJ, Becker MA. Human erythrocyte phosphoribosylpyrophosphate synthetase: dependence of activity on state of subunit association. J Biol Chem. 1977;252:3919.

    PubMed  CAS  Google Scholar 

  11. Becker MA, Yen RCK, Itkin P. Regional localization of the gene for human phosphoribosylpyrophosphate synthetase on the X-chromosome. Science. 1979;203:1016.

    PubMed  CAS  Google Scholar 

  12. Wood AW, Becker MA, Seegmiller JE. Purine nucleotide synthesis in lymphoblasts cultured from normal subjects and a patient with Lesch-Nyhan syndrome. Biochem Genet. 1973;9:261.

    PubMed  CAS  Google Scholar 

  13. Losman MJ, Hecker S, Woo S, Becker MA. Diagnostic evaluation of phosphoribosylpyrophosphate synthetase activities in hemolysates. J Lab Clin Med. 1984;103:932.

    PubMed  CAS  Google Scholar 

  14. Sperling O, Eilam G, Persky-Brosh S, de Vries A. Accelerated erythrocyte 5-phosphoribosyl-1-pyrophosphate synthesis. A familial abnormality associated with excessive uric acid production and gout. Biochem Med. 1972;6:310.

    PubMed  CAS  Google Scholar 

  15. Nyhan WL, James JA, Teberg AJ, Sweetman L, Nelson LG. A new disorder of purine metabolism with behavioral manifestations. J Pediatr. 1969;74:20.

    PubMed  CAS  Google Scholar 

  16. Rosenberg AL, Bergstrom L, Troost BT, Bartholomew BA. Hyperuricemia and neurologic deficits. N Engl J Med. 1970;282:992.

    PubMed  CAS  Google Scholar 

  17. Becker MA, Raivio KO, Bakay B, Adams WB, Nyhan WL. Variant human phosphoribosylpyrophosphate synthetase altered in regulatory and catalytic functions. J Clin Invest. 1980;65:109.

    PubMed  CAS  Google Scholar 

  18. Becker MA. Phosphoribosylpyrophosphate synthetase superactivity: detection, characterization of underlying defects and treatment. Adv Exp Med Biol. 1984;165A:91.

    Google Scholar 

  19. Simmonds HA, Webster DR, Wilson J, Lingham S. An X-linked syndrome characterized by hyperuricemia, deafness, and neurological abnormalities. Lancet. 1982;2:68.

    PubMed  CAS  Google Scholar 

  20. Becker MA, Losman MJ, Rosenberg AL, Mehlman I, Levinson DJ, Holmes EW. Phosphoribosylpyro­phosphate synthetase superactivity. Arthritis Rheum. 1986;29:880.

    PubMed  CAS  Google Scholar 

  21. Becker MA, Puig JG, Mateos FA, Jimenez ML, Kim M, Simmonds HA. Inherited superactivity of phosphoribosylpyrophosphate synthetase: association of uric acid overproduction and sensorineural deafness. Am J Med. 1988;85:383.

    PubMed  CAS  Google Scholar 

  22. Christen H-J, Hanefeld F, Duley JA, Simmonds HA. Distinct neurological syndrome in two brothers with hyperuricaemia. Lancet. 1992;340:1167.

    PubMed  CAS  Google Scholar 

  23. Becker MA, Meyer LJ, Seegmiller JE. Gout with purine overproduction due to increased phosphoribosylpyrophosphate synthetase activity. Am J Med. 1973;55:232.

    PubMed  CAS  Google Scholar 

  24. Becker MA. Patterns of phosphoribosylpyrophosphate and ribose-5-phosphate concentration and generation in fibroblasts from patients with gout and purine over-production. J Clin Invest. 1976;57:308.

    PubMed  CAS  Google Scholar 

  25. Akaoka I, Fujimori S, Kamatani N, Takeuchi F, Yano E, Nishida Y, et al. A gouty family with increased phosphoribosylpyrophosphate synthetase activity: case reports, family studies, and kinetic studies of the abnormal enzyme. J Rheumatol. 1981;8:563.

    PubMed  CAS  Google Scholar 

  26. Becker MA, Losman MJ, Itkin P, Simkin PA. Gout with superactive phosphoribosylpyrophosphate synthetase due to increased enzyme catalytic rate. J Lab Clin Med. 1982;99:485.

    Google Scholar 

  27. Becker MA, Losman MJ, Wilson J, Simmonds HA. Superactivity of human phosphoribosylpyrophosphate synthetase due to altered regulation by nucleotide inhibitors and inorganic phosphate. Biochim Biophys Acta. 1986;882:168.

    PubMed  CAS  Google Scholar 

  28. Wada Y, Nishimura Y, Tanabu M, Yoshimura Y, Iinuma K, Yoshida T, Arakawa T. Hypouricemic, mentally retarded infant with a defect of 5-phosphoribosyl-1-pyrophosphate synthetase of erythrocytes. Tohoku J Exp Med. 1974;113:149.

    PubMed  CAS  Google Scholar 

  29. Iinuma K, Wada Y, Onuma A, Tanabu M. Electroencephalographic study of an infant with phosphoribosylpyrophosphate synthetase deficiency. Tohoku J Exp Med. 1975;116:53.

    Google Scholar 

  30. Becker MA, Kostel PJ, Meyer LJ, Seegmiller JE. Human phosphoribosylpyrophosphate synthetase: increased enzyme specific activity in a family with gout and excessive purine synthesis. Proc Natl Acad Sci USA. 1973;70:2749.

    PubMed  CAS  Google Scholar 

  31. Hershko A, Hershko C, Mager J. Increased formation of 5′-phosphoribosyl-1-pyrophosphate in red blood cells of some gouty patients. Isr J Med Sci. 1968;4:939.

    PubMed  CAS  Google Scholar 

  32. Sperling O, Persky-Brosh S, Boer P, De Vreis A. Human erythrocyte phosphoribosylpyrophosphate synthetase mutationally altered in regulatory properties. Biochem Med. 1973;7:389.

    PubMed  CAS  Google Scholar 

  33. Henderson JF, Rosenbloom FM, Kelley WN, Seegmiller JE. Variations in purine metabolism of cultured skin fibroblasts from patients with gout. J Clin Invest. 1968;47:1511.

    PubMed  CAS  Google Scholar 

  34. Becker MA, Smith PR, Taylor W, Mustafi R, Switzer RL. The genetic and functional basis of purine nucleotide feedback-resistant phosphoribosylpyrophosphate synthetase superactivity. J Clin Invest. 1995;906:2133–41.

    Google Scholar 

  35. Lejeune E, Bouvier M, Mousson B, Llorca G, Baltassat P. Anomalies de la phosphoribosylpyrophosphate synthetase dans deux cas de goutte a debut precose. Rev Rhum. 1979;46:457.

    PubMed  CAS  Google Scholar 

  36. Roessler BJ, Golovoy N, Palella TD, Heidler S, Becker MA. Identification of distinct PRS1 mutations in two patients with X-linked phosphoribosylpyrophosphate synthetase overactivity. Adv Exp Med Biol. 1991;309B:125.

    PubMed  CAS  Google Scholar 

  37. Ishizuka T, Iizasa T, Taiara M, Ishijuma S, Sonada T, Shimada H, Nagatake N, Tatibana M. Promoter regions of the human X-linked housekeeping gene PRPS1 and PRPS2 encoding phosphoribosylpyrophosphate synthetase subunit I and II isoforms. Biochim Biophys Acta. 1992;1130:139–48.

    PubMed  CAS  Google Scholar 

  38. Becker MA, Losman MJ, Kim M. Mechanisms of accelerated purine nucleotide synthesis in human fibroblasts with superactive phosphoribosylpyrophosphate synthetase. J Biol Chem. 1987;262:5596–602.

    PubMed  CAS  Google Scholar 

  39. Becker MA, Taylor W, Smith PR, Ahmed M. Overexpression of the normal phosphoribosylpyrophosphate synthetase 1 isoform underlies catalytic superactivity of human phosphoribosylpyrophosphate synthetase. J Biol Chem. 1996;271:19894–9.

    PubMed  CAS  Google Scholar 

  40. Taira M, Ishijima S, Kita K, Yamada K, Iizasa T, Tatibana M. Nucleotide and deduced amino acid sequences of two distinct cDNAs for rat phosphoribosylpyrophosphate synthetase. J Biol Chem. 1987;262:14867.

    PubMed  CAS  Google Scholar 

  41. Taira M, Kudoh J, Minoshima S, Ikzasa T, Shimada H, Shimizu Y, Tatibana M, Shimizu N. Localization of human phosphoribosylpyrophosphate synthetase subunit I and II genes (PRPS1 and PRPS2) to different regions of the X chromosome and assignment of two PRPS1-related genes to autosomes. Somat Cell Mol Genet. 1989;15:29.

    PubMed  CAS  Google Scholar 

  42. Becker MA, Heidler SA, Bell GI, Seino S, Le Beau MM, Westbrook CA, Neuman W, Shapiro LJ, Mohandas TK, Roessler BJ, Palella TD. Cloning of cDNAs for human phosphoribosylpyrophosphate synthetases 1 and 2 and X chromosome localization of PRPS1 and PRPS2 genes. Genomics. 1990;8:555.

    PubMed  CAS  Google Scholar 

  43. Sonoda T, Taira M, Ishijima S, Ishjizuka T, Iizasa T, Tatibana M. Complete nucleotide sequence of human phosphoribosylpyrophosphate synthetase subunit I (PRPS1) cDNA and a comparison with human and rat PRPS gene families. J Biochem. 1991;109:361.

    PubMed  CAS  Google Scholar 

  44. Iizasa T, Taira M, Shimada H, Ishijima S, Tatibana M. Molecular cloning and sequencing of human cDNA for phosphoribosylpyrophosphate synthetase subunit II. FEBS Lett. 1989;244:47.

    PubMed  CAS  Google Scholar 

  45. Taira M, Iizasa T, Yamada K, Shimada H, Tatibana M. Tissue-differential expression of two distinct genes for phosphoribosylpyrophosphate synthetase and existence of the testis-specific transcript. Biochim Biophys Acta. 1989;1007:203.

    PubMed  CAS  Google Scholar 

  46. Taira M, Iizasa T, Shimada H, Kudoh J, Shimizu N, Tatibana M. A human testis-specific mRNA for phosphoribosylpyrophosphate synthetase that initiates from a non-AUG codon. J Biol Chem. 1990;265:16491.

    PubMed  CAS  Google Scholar 

  47. Becker MA, Roessler BJ. Hyperuricemia and gout. In: Scriver CR, Beudet AL, Sly WS, Valle D, editors. The metabolic and molecular bases of inherited disease, vol. II. New York: McGraw-Hill, Inc.; 1995. 1670p.

    Google Scholar 

  48. Nosal JM, Switzer RL, Becker MA. Overexpression, purification, and characterization of recombinant human 5-phosphoribosyl-1-pyrophosphate synthetase isozymes I and II. J Biol Chem. 1993;268:10168.

    PubMed  CAS  Google Scholar 

  49. Roessler BJ, Nosal JM, Smith PR, Heidler SA, Palella TD, Switzer RL, Becker MA. Human X-linked phosphoribosylpyrophosphate synthetase superactivity is associated with distinct point mutations in the PRPS1 gene. J Biol Chem. 1993;268:26476.

    PubMed  CAS  Google Scholar 

  50. Holmes EW, McDonald JA, McCord JM, Wyngaarden JW, Kelley WN. Human glutamine phosphoribosylpyrophosphate amidotransferase: kinetic and regulatory properties. J Biol Chem. 1973;248:144.

    PubMed  CAS  Google Scholar 

  51. Holmes EW. Kinetic, physical, and regulatory properties of amidophosphoribosyltransferase. Adv Enzyme Regul. 1981;44:215.

    Google Scholar 

  52. Caskey CT, Ashton DM, Wyngaarden JB. The enzymology of feedback inhibition of glutamine phosphoribosylpyrophosphate amidotransferase by purine nucleotides. J Biol Chem. 1964;239:2570.

    PubMed  CAS  Google Scholar 

  53. Becker MA, Kim M. Regulation of purine synthesis de novo in human fibroblasts by purine nucleotides and phosphoribosylpyrophosphate. J Biol Chem. 1987;262:14531.

    PubMed  CAS  Google Scholar 

  54. Wood AW, Seegmiller JE. Properties of 5-phosphoribosyl-1-pyrophosphate amidotransferase from human lymphoblasts. J Biol Chem. 1973;248:138.

    PubMed  CAS  Google Scholar 

  55. Singer SC, Holmes EW. Human glutamine phosphoribosylpyrophosphate amidotransferase: hysteretic properties. J Biol Chem. 1977;252:7959.

    PubMed  CAS  Google Scholar 

  56. Holmes EW, Wyngaarden JB, Kelley WN. Human glutamine phosphoribosylpyrophosphate amidotransferase: two molecular forms interconvertible by purine ribonucleotides and phosphoribosylpyrophosphate. J Biol Chem. 1973;248:6035.

    PubMed  CAS  Google Scholar 

  57. Stanley W, Chu EHY. Assignment of the gene for phosphoribosylpyrophosphate amidotransferase to the pter → q21 region of human chromosome 4. Cytogenet Cell Genet. 1978;22:228.

    PubMed  CAS  Google Scholar 

  58. Nagy M. Regulation of the biosynthesis of purine nucleotides in Schizosaccharomyces pombe. I. Properties of phosphoribosylpyrophosphate: glutamine amidotransferase of the wild strain and of a mutant desensitized towards feedback modifiers. Biochim Biophys Acta. 1970;198:471.

    PubMed  CAS  Google Scholar 

  59. Henderson JF, Caldwell IE, Paterson ARP. Decreased feedback inhibition of a 6-methylmercaptopurine resistant tumor. Cancer Res. 1967;27:1773.

    PubMed  CAS  Google Scholar 

  60. Oates DC, Vannais D, Patterson D. A mutant of CHO-K1 cells deficient in two nonsequential steps of de novo purine biosynthesis. Cell. 1980;20:757.

    Google Scholar 

  61. Kim JH, Krahn JM, Tomchick DR, Smith JL, Zalkin H. Structure and function of the glutamine phosphoribosylpyrophosphate amidotransferase glutamine site and communication with the phosphoribosylpyrophosphate site. J Biol Chem. 1996;271:15549–57.

    PubMed  CAS  Google Scholar 

  62. Kim JH, Wolle D, Haridas K, Parry RJ, Smith JL, Zalkin H. A stable carbocyclic analog of 5-phosphoribosyl-1-pyrophosphate to probe the mechanism of catalysis and regulation of glutamine phosphoribosylpyrophosphate amidotransferase. J Biol Chem. 1995;270:17394–9.

    PubMed  CAS  Google Scholar 

  63. Iwahana H, Itakura M. Amidophosphoribosyltransferase. Nippon Rinsho. 1996;54:3202–6.

    PubMed  CAS  Google Scholar 

  64. Smith JL. Enzymes of nucleotide synthesis. Curr Opin Struct Biol. 1995;5:752–7.

    PubMed  CAS  Google Scholar 

  65. Smith JL, Zaluzec EJ, Wery JP, Niu L, Switzer RL, Zalkin H, Satow Y. Structure of the allosteric regulatory enzyme of purine biosynthesis. Science. 1994;264:1427–33.

    PubMed  CAS  Google Scholar 

  66. Iwahana H, Oka J, Mizusawa N, Kudo E, Ii S, Yoshimoto K, Holmes EW, Itakura M. Molecular cloning of human amidophosphoribosyltransferase. Biochem Biophys Res Commun. 1993;190:192–200.

    PubMed  CAS  Google Scholar 

  67. Chen S, Tomchick DR, Walle D, Hu P, Smith JL, Switzer RL, Zalkin H. Mechanism of the synergistic end-product regulation of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase by nucleotides. Biochemistry. 1997;36:10718–26.

    PubMed  CAS  Google Scholar 

  68. Krahn JM, Kim JH, Burns MR, Parry RJ, Zalkin H, Smith JL. Coupled formation of an amidotransferase interdomain ammonia channel and phosphoribosyltransferase active site. Biochemistry. 1997;36:11061–8.

    PubMed  CAS  Google Scholar 

  69. Meschmore CR, Krahn JM, Kim JH, Zalkin H, Smith JL. Crystal structure of glutamine phosphoribosylpyrophosphate amidotransferase from Escherichia coli. Protein Sci. 1998;7:39–51.

    Google Scholar 

  70. Zalkin H, Smith JL. Enzymes utilizing glutamine as an amide donor. Adv Enzymol Relat Areas Mol Biol. 1998;72:87–144.

    PubMed  CAS  Google Scholar 

  71. Smith JL. Glutamine PRPP amidotransferase: snapshots of an enzyme in action. Curr Opin Struct Biol. 1998;8:686–94.

    PubMed  CAS  Google Scholar 

  72. Bera AK, Chen S, Smith JL, Zalkin H. Interdomain signaling in glutamine phosphoribosylpyrophosphate amidotransferase. J Biol Chem. 1999;274:36498–504.

    PubMed  CAS  Google Scholar 

  73. Bera AK, Smith JL, Zalkin H. Dual role for the glutamine phosphoribosylpyrophosphate amidotransferase ammonia channel. Interdomain signaling and intermediate channeling. J Biol Chem. 2000;275:7975–9.

    PubMed  CAS  Google Scholar 

  74. Li S, Smith JL, Zalkin H. Mutational analysis of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase propeptide processing. J Bacteriol. 1999;181:1403–8.

    PubMed  CAS  Google Scholar 

  75. Brayton KA, Chen Z, Zhon G, Nagy P, Gavalas A, Trent JM, Deaven LL, Dixon JE, Zalkin H. Two genes for de novo purine nucleotide synthesis on human chromosome 4 are closely linked and divergently transcribed. J Biol Chem. 1994;269:5313–21.

    PubMed  CAS  Google Scholar 

  76. Newcombe DS. Unpublished observations.

    Google Scholar 

  77. Gutensohn W, Guroff G. Hypoxanthine guanine phosphoribosyltransferase from rat brain (purification, kinetic properties, development, and distribution). J Neurochem. 1972;19:2139.

    PubMed  CAS  Google Scholar 

  78. Adams A, Harkness RA. Developmental changes in purine phosphoribosyltransferases in human and rat tissues. Biochem J. 1976;100:565.

    Google Scholar 

  79. Rosenbloom FM, Kelley WN, Miller J, Henderson JF, Seegmiller JE. Inherited disorder of purine metabolism: correlation between central nervous system dysfunction and biochemical defects. JAMA. 1967;202:175.

    PubMed  CAS  Google Scholar 

  80. Watts RWE, Harkness RA, Spellacy E, Taylor NF. Lesch-Nyhan syndrome: growth delay, testicular atrophy a partial failure of the 11β-hydroxylation of steroids. J Inherit Metab Dis. 1987;10:210.

    PubMed  CAS  Google Scholar 

  81. DeBruyn CHMM, Oei TL. Purine phosphoribosyltransferase in human erythrocyte ghosts. Adv Exp Med Biol. 1977;76A:139.

    CAS  Google Scholar 

  82. Yip LC, Chang V, Balis EM. Membrane-associated purine metabolizing enzyme activities of human peripheral blood cells. Biochemistry. 1982;21:6972.

    PubMed  CAS  Google Scholar 

  83. Melton DW, Konecki DS, Ledbetter DH, Hejtmancik JF, Caskey CT. In vitro translation of hypoxanthine guanine phosphoribosyltransferase mRNA: characterization of a mouse neuroblastoma cell line that has elevated levels of hypoxanthine guanine phosphoribosyltransferase protein. Proc Natl Acad Sci USA. 1981;78:6977.

    PubMed  CAS  Google Scholar 

  84. Allsop J, Watts RWE. Activities of amidophosphoribosyltransferase (EC 2.4.2.14) and the purine phosphoribosyltransferases (EC 2.4.2.7 and 2.4.2.8) and the phosphoribosylpyrophosphate content of rat central nervous system at different stages of development. J Neurol Sci. 1980;46:221.

    PubMed  CAS  Google Scholar 

  85. Krenitsky TA, Papaioannou R, Elion GB. Human hypoxanthine phosphoribosyltransferase I. Purification, properties and specificity. J Biol Chem. 1969;244:1263.

    PubMed  CAS  Google Scholar 

  86. Salerno C, Giacomello A. Human hypoxanthine guanine phosphoribosyltransferase. The role of magnesium ion in a phosphoribosylpyrophosphate-utilizing enzyme. J Biol Chem. 1981;256:3671.

    PubMed  CAS  Google Scholar 

  87. Wilson JM, Tarr GE, Mahoney WC, Kelley WN. Human hypoxanthine-guanine phosphoribosyltransferase deficiency. Complete amino acid sequence of the erythrocyte enzyme. J Biol Chem. 1982;257:10987.

    Google Scholar 

  88. Strauss M, Behlke J, Ampers F, Goeri M. Evidence against the existence of real isoenzymes of hypoxanthine phosphoribosyltransferase. Eur J Biochem. 1978;90:89.

    PubMed  CAS  Google Scholar 

  89. Johnson GG, Eisenberg LR, Migeon BR. Human and mouse hypoxanthine guanine phosphoribosyltransferases dimers and tetramers. Science. 1979;203:174.

    PubMed  CAS  Google Scholar 

  90. Holden JA, Kelley WN. Human hypoxanthine-guanine phosphoribosyltransferase. Evidence for tetrameric structure. J Biol Chem. 1978;253:4459.

    PubMed  CAS  Google Scholar 

  91. Eads JC, Scapin G, Xu Y, Grubmeyer C, Sacchettini JC. The crystal structure of human hypoxanthine-guanine phosphoribosyltransferase with bound GMP. Cell. 1994;78:325–34.

    PubMed  CAS  Google Scholar 

  92. Xu Y, Eads J, Sacchettini JC, Grubmeyer C. Kinetic mechanism of human hypoxanthine-guanine phosphoribosyltransferase: rapid phosphoribosyl transfer chemistry. Biochemistry. 1997;36:3700–12.

    PubMed  CAS  Google Scholar 

  93. Henderson JF, Brox LW, Kelley WN, Rosenbloom FM, Seegmiller JE. Kinetic studies of hypoxanthine-guanine phosphoribosyltransferase. J Biol Chem. 1968;243:2514.

    PubMed  CAS  Google Scholar 

  94. McDonald JA, Kelley WN. Lesch-Nyhan syndrome: altered kinetic properties of mutant enzyme. Science. 1971;171:689.

    PubMed  CAS  Google Scholar 

  95. Keough DT, McConachie LA, Gordon RB, de Jersey J, Emmerson BT. Human hypoxanthine phosphoribosyltransferase. Development of a spectrometric assay and its use in detection and characterization of mutant forms. Clin Chim Acta. 1987;163:301.

    PubMed  CAS  Google Scholar 

  96. Bakay B, Nyhan WL. Heterogeneity of hypoxanthine guanine phosphoribosyltransferase from human erythrocytes. Arch Biochem Biophys. 1975;168:26.

    PubMed  CAS  Google Scholar 

  97. Olsen AS, Milman G. Subunit molecular weight of human hypoxanthine guanine phosphoribosyltransferase. J Biol Chem. 1974;249:4038.

    PubMed  CAS  Google Scholar 

  98. Olsen AS, Milman G. Human hypoxanthine phosphoribosyltransferase: purification and properties. Biochemistry. 1977;21:960.

    Google Scholar 

  99. Davies MR, Dean BM. The heterogeneity of erythrocyte IMP: pyrophosphate phosphoribosyltransferase and purine nucleoside phosphorylase by isoelectric focusing. FEBS Lett. 1971;18:283.

    PubMed  CAS  Google Scholar 

  100. Shi W, Li CM, Tyler PC, Furneaux RH, Grubmeyer C, Schramm VL, Almo SC. The 2.0 A structure of human hypoxanthine-guanine phosphoribosyltransferase in complex with a transition-state analog inhibitor. Nat Struct Biol. 1999;6:588–93.

    PubMed  CAS  Google Scholar 

  101. Lee CC, Craig 3rd SP, Eakin AE. A single amino acid substitution in the human and a bacterial hypoxanthine phosphoribosyltransferase modulates specificity for the binding of guanine. Biochemistry. 1998;37:3491–8.

    PubMed  CAS  Google Scholar 

  102. Xu Y, Grubmeyer C. Catalysis in human hypoxanthine-guanine phosphoribosyltransferase: Asp 137 acts as a general acid/base. Biochemistry. 1998;37:4114–24.

    PubMed  CAS  Google Scholar 

  103. Balendiran GK, Molina JA, Xu Y, Torres-Martinez J, Stevens R, Focia PJ, Eakin AE, Sacchettini JC, Craig 3rd SP. Ternary complex structure of human HGPRTase, PRPP, Mg2+, and the inhibitor HPP reveals the involvement of the flexible loop in substrate binding. Protein Sci. 1999;8:1023–31.

    PubMed  CAS  Google Scholar 

  104. Chiaverotti TA, Battula N, Monnat Jr RJ. Rat hypoxanthine phosphoribosyltransferase cDNA cloning and sequence analysis. Genomics. 1991;11:1158.

    PubMed  CAS  Google Scholar 

  105. Argos P, Hanei M, Wilson JM, Kelley WN. A possible nucleotide-binding domain in the tertiary fold of phosphoribosyltransferases. J Biol Chem. 1983;258:6430.

    Google Scholar 

  106. Dush MK, Sikela JM, Khan SA, Tischfield JA, Stambrook PJ. Nucleotide sequence and organization of the mouse adenine phosphoribosyltransferase gene: presence of a coding region common to animal and bacterial phosphoribosyltransferases that has variable intron/exon arrangement. Proc Natl Acad Sci USA. 1985;82:2731.

    PubMed  CAS  Google Scholar 

  107. Hershey HV, Taylor MW. Nucleotide sequence and deduced amino acid sequence of Escherichia coli adenine phosphoribosyltransferase and comparison with other analogous enzymes. Gene. 1986;43:287.

    PubMed  CAS  Google Scholar 

  108. Wilson JM, Young AB, Kelley WN. Hypoxanthine-guanine phosphoribosyltransferase deficiency. The molecular basis of the clinical syndromes. N Engl J Med. 1983;309:900.

    PubMed  CAS  Google Scholar 

  109. Wilson JM, Kobayashi R, Fox IH, Kelley WN. Human hypoxanthine-guanine phosphoribosyltransferase. Molecular abnormality in a mutant form of the enzyme (HPRTToronto). J Biol Chem. 1983;258:6458.

    PubMed  CAS  Google Scholar 

  110. Davidson BL, Tarle SA, Palella TD, Kelley WN. Molecular basis of hypoxanthine-guanine phosphoribosyltransferase deficiency in ten subjects determined by direct sequencing of amplified transcripts. J Clin Invest. 1989;84:342.

    PubMed  CAS  Google Scholar 

  111. Wilson JM, Kelley WN. Human hypoxanthine-­guanine phosphoribosyltransferase. Structural alteration in a dysfunctional enzyme variant (HPRT Munich) isolated from a patient with gout. J Biol Chem. 1984;259:27.

    PubMed  CAS  Google Scholar 

  112. Wilson JM, Tarr GE, Kelley WN. Human hypoxanthine (guanine) phosphoribosyltransferase: an amino acid substitution in a mutant form of the enzyme isolated from a patient with gout. Proc Natl Acad Sci USA. 1983;89:870.

    Google Scholar 

  113. Jolly DJ, Okayama H, Berg P, Esty AC, Filpula D, Bohlen P, Johnson GG, Shively JE, Hunkapillar T, Friedmann T. Isolation and characterization of a full-length expressible cDNA for human hypoxanthine phosphoribosyltransferase. Proc Natl Acad Sci USA. 1983;80:477.

    PubMed  CAS  Google Scholar 

  114. Francke U, Taggart RT. Comparative gene mapping: order of loci on the X chromosome is different in mice and humans. Proc Natl Acad Sci USA. 1980;77:3595.

    PubMed  CAS  Google Scholar 

  115. Shows TB, Brown JA. Localization of genes coding for PGK, HPRT, and G6PD on the long arm of the X chromosome in somatic hybrids. Cytogenet Cell Genet. 1975;14:426.

    PubMed  CAS  Google Scholar 

  116. Pai GS, Sprenkle JA, Do TT, Mareni CE, Migeon BR. Localization of loci for hypoxanthine phosphoribosyltransferase and glucose-6-phosphate dehydrogenase and biochemical evidence of nonrandom X chromosome expression from studies of a human X-autosome translocation. Proc Natl Acad Sci USA. 1980;77:2810.

    PubMed  CAS  Google Scholar 

  117. Nicklas JA, Hunter TC, O’Neill JP, Albertini RJ. Fine structure mapping of the hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene region of the human X chromosome (Xq26). Am J Hum Genet. 1991;49:267.

    PubMed  CAS  Google Scholar 

  118. Reilly DS, Lewis RA, Nussbaum RL. Genetic and physical mapping of Xq24-q26 markers flanking the Lowe oculocerebrorenal syndrome. Genomics. 1990;8:62.

    PubMed  CAS  Google Scholar 

  119. Patel PI, Nussbaum RL, Framson PE, Ledbetter DH, Caskey CT, Chinault AC. Organization of the HPRT gene and related sequences in the human genome. Somat Cell Mol Genet. 1984;10:483.

    PubMed  CAS  Google Scholar 

  120. Edwards A, Voss H, Rice P, Civitello A, Stegemann J, Schwager C, Zimmermann J, Edrfle H, Caskey CT, Ansorge W. Automated DNA sequencing of the human HPRT locus. Genomics. 1990;6:593.

    PubMed  CAS  Google Scholar 

  121. Dynan WS, Sazer S, Tjian R, Schimke RT. Transcription factor Spl recognizes a DNA sequence in the mouse dihydrofolate reductase promoter. Nature. 1986;319:246.

    PubMed  CAS  Google Scholar 

  122. Patel PI, Framson PE, Caskey CT, Chinault AG. Fine structure of the human hypoxanthine phosphoribosyltransferase gene. Mol Cell Biol. 1986;6:393.

    PubMed  CAS  Google Scholar 

  123. Kim SH, Moores JC, David D, Respess JG, Jolly DJ, Freidmann T. The organization of the human HPRT gene. Nucleic Acids Res. 1986;14:3103.

    PubMed  CAS  Google Scholar 

  124. Rincon-Limas DE, Krueger DA, Patel PI. Functional characterization of the human hypoxanthine phosphoribosyltransferase gene promoter: evidence for a negative regulatory element. Mol Cell Biol. 1991;11:4157.

    PubMed  CAS  Google Scholar 

  125. Johnson P, Friedmann T. Limited bidirectional activity of two housekeeping promoters: human HPRT and PGK. Gene. 1990;88:207.

    PubMed  CAS  Google Scholar 

  126. Sykes RC, Lin D, Hwang SJ, Framson PE, Chinault AC. Yeast ARS function and nuclear matrix association coincide in a short sequence from the human HPRT locus. Mol Gen Genet. 1988;212:301.

    PubMed  CAS  Google Scholar 

  127. Davidson JD, Bradley TR, Roosa RA, Law LW. Purine nucleotide pyrophosphorylases in 8-azaguanine-sensitive and resistant P 388 leukemias. Natl Cancer Inst Monogr. 1962;29:789.

    CAS  Google Scholar 

  128. Littlefield JW. The inosinic acid pyrophosphorylase activity of mouse fibroblasts partially resistant to 8-azaguanine. Proc Natl Acad Sci USA. 1963;50:568.

    PubMed  CAS  Google Scholar 

  129. Brockman RW, Debovadi CS, Stutts P, Hutchinson DJ. Purine ribonucleotide pyrophosphorylase and resistance to purine analogues in Streptococcus faecalis. J Biol Chem. 1961;236:1471.

    CAS  Google Scholar 

  130. Seegmiller JE, Rosenbloom FM, Kelley WN. An enzyme defect associated with a sex-linked human neurological disorder and excessive purine synthesis. Science. 1967;155:1682.

    PubMed  CAS  Google Scholar 

  131. Kelley WN, Rosenbloom FM, Henderson JR, Seegmiller JE. A specific enzyme defect in gout associated with overproduction of uric acid. Proc Natl Acad Sci USA. 1967;57:1735.

    PubMed  CAS  Google Scholar 

  132. Bakay B, Nyhan WL. Activation of variants of hypoxanthine-guanine phosphoribosyltransferase by the normal enzyme. Proc Natl Acad Sci USA. 1972;69:2523.

    PubMed  CAS  Google Scholar 

  133. Bakay B, Nyhan WL. Electrophoretic properties of hypoxanthine-guanine phosphoribosyltransferase in erythrocytes of subjects with Lesch-Nyhan syndrome. Biochem Genet. 1972;6:139.

    PubMed  CAS  Google Scholar 

  134. Kelley WN, Meade JC. Studies on hypoxanthine-guanine phosphoribosyltransferase in fibroblasts from patients with the Lesch-Nyhan syndrome: evidence for genetic heterogeneity. J Biol Chem. 1971;246:2953.

    PubMed  CAS  Google Scholar 

  135. Arnold WJ, Meade JC, Kelley WN. Hypoxanthine-guanine phosphoribosyltransferase: characteristics of the mutant enzyme in erythrocytes from patients with the Lesch-Nyhan syndrome. J Clin Invest. 1972;51:1805.

    PubMed  CAS  Google Scholar 

  136. Benke PM, Herrick N. Azaguanine-resistance as a manifestation of a new form of metabolic overproduction of uric acid. Am J Med. 1972;52:547.

    PubMed  CAS  Google Scholar 

  137. Gutensohn W, Jahn H. Partial deficiency of hypoxanthine-phosphoribosyltransferase: evidence for a structural mutation in a patient with gout. Eur J Clin Invest. 1979;9:43.

    PubMed  CAS  Google Scholar 

  138. Sperling O, Boer P, Eilam G, DeVries A. Altered kinetic properties of erythrocyte phosphoribosylpyrophosphate synthetase in excessive purine production. Eur J Clin Biol Res. 1972;17:703.

    CAS  Google Scholar 

  139. Balis ME, Yip LC, Yu TF, Gutman AB, Cox R, Dancis J. Unstable HPRTase in subjects with abnormal urinary oxypurine excretion. In: Sperling O, DeVries A, Wyngaarden JB, editors. Purine metabolism in man. New York: Plenum; 1974. p. 195.

    Google Scholar 

  140. Wilson JM, Stout JT, Palella TD, Davidson BL, Kelley WN, Caskey CT. A molecular survey of hypoxanthine-guanine phosphoribosyltransferase deficiency in man. J Clin Invest. 1986;77:188.

    PubMed  CAS  Google Scholar 

  141. Davidson BL, Tarle SA, van Antwerp M, Gibbs DA, Watts RWE, Kelley WN, Palella TD. Identification of 17 independent mutations responsible for human hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency. Am J Hum Genet. 1991;48:951.

    PubMed  CAS  Google Scholar 

  142. Gordon RB, Dawson PA, Sculley DG, Emmerson BT, Caskey CT, Gibbs RA. The molecular characterization of HPRTCHERMSIDE and HPRTCOORPAROO: two Lesch-Nyhan patients with reduced amounts of mRNA. Gene. 1991;108:299.

    PubMed  CAS  Google Scholar 

  143. Gibbs RA, Nguyen PN, Edwards A, Civitello AB, Caskey CT. Multiplex DNA deletion detection and exon sequencing of the hypoxanthine-guanine phosphoribosyltransferase gene in Lesch-Nyhan families. Genomics. 1990;7:235.

    PubMed  CAS  Google Scholar 

  144. Ogasawara N, Stout JT, Goto H, Sonta SI, Matsumoto A, Caskey CT. Molecular analysis of a female Lesch-Nyhan patient. J Clin Invest. 1989;84:1024.

    PubMed  CAS  Google Scholar 

  145. Yamada Y, Goto H, Ogasawara N. Identification of two independent Japanese mutant HPRT genes using the PCR technique. Adv Exp Med Biol. 1991; 309B:121.

    PubMed  CAS  Google Scholar 

  146. Stout JT, Caskey CT. HPRT: gene structure, expression, and mutation. Annu Rev Genet. 1985;19:127.

    PubMed  CAS  Google Scholar 

  147. Tarle SA, Davidson BL, Wu VC, Zidar FJ, Seegmiller JE, Kelley WN, Palella TD. Deter­mination of the mutations responsible for the Lesch-Nyhan syndrome in 17 subjects. Genomics. 1991;10:499.

    PubMed  CAS  Google Scholar 

  148. Wehnert M, Herrmann FH. Characterization of three new deletions at the 5′ end of the HPRT structural gene. J Inherit Metab Dis. 1990;13:178.

    PubMed  CAS  Google Scholar 

  149. Igarashi T, Minami M, Nishada Y. Molecular analysis of hypoxanthine-guanine phosphoribosyltransferase mutations in five unrelated Japanese patients. Acta Paediatr Jpn. 1989;31:303.

    PubMed  CAS  Google Scholar 

  150. Gibbs RA, Nguyen PN, McBride LJ, Koepf SM, Caskey CT. Identification of mutations leading to the Lesch-Nyhan syndrome by automated direct DNA sequencing of in vitro amplified cDNA. Proc Natl Acad Sci USA. 1989;86:1919.

    PubMed  CAS  Google Scholar 

  151. Yang TP, Patel PI, Chinault AC, Jackson LG, Hildebrand BM, Caskey CT. Molecular evidence for new mutation at the hprt locus in Lesch-Nyhan patients. Nature. 1984;310:412.

    PubMed  CAS  Google Scholar 

  152. McKusick VA, Francomano CA, Antonarakis SE. Mendelian inheritance in man. Catalogs of autosomal dominant, autosomal recessive, and X-linked phenotypes. 10th ed. Baltimore: The Johns Hopkins University Press; 1992.

    Google Scholar 

  153. Kim KJ, Yamada Y, Suzumori K, Choi Y, Yang SW, Cheong HI, Hwang YS, Goto H, Ogasawara N. Molecular analysis of hypoxanthine guanine phosphoribosyltransferase (HPRT) gene in five Korean families with Lesch-Nyhan syndrome. J Korean Med Soc. 1997;12:332–9.

    CAS  Google Scholar 

  154. Torres Jimenez R, Mateos Anton F, Molano Mateos J, Garcia Puig J. The genetic diagnosis of hypoxanthine-guanine phosphoribosyltransferase (HGPRT) deficiency. A study of 12 cases. Med Clin (Barc). 1997;108:344–8.

    CAS  Google Scholar 

  155. Maruta K, Ohi T, Yamada Y, Goto H, Ogasawara N, Matsukura S. A Japanese family with Lesch-Nyhan syndrome resulting from a new point mutation in hypoxanthine-guanine phosphoribosyltransferase gene. No To Shinkei. 1997;49:1009–13.

    PubMed  CAS  Google Scholar 

  156. Hidalgo-Laos RI, Kedar A, Williams CA, Neiberger RE. A new point mutation in a hypoxanthine phosphoribosyltransferase-deficient patient. Pediatr Nephrol. 1997;11:645–8.

    PubMed  CAS  Google Scholar 

  157. Hikita M, Hosoya T, Ichida K, Okabe H, Saji M, Ohno I, Kuriyama S, Tomonari H, Hayashi F, Fujimori S, Yamaoka N, Sakuma R. Partial deficiency of hypoxanthine-guanine phosphoribosyltransferase manifesting as acute renal damage. Intern Med. 1998;37:945–9.

    PubMed  CAS  Google Scholar 

  158. Tvrdik T, Marcus S, Hou SM, Falt S, Noori P, Podlutskaja N, Hanefeld F, Stromme P, Lambert B. Molecular characterization of two deletion events involving Alu-sequences, one novel base substitution and two tentative hotspot mutations in hypoxanthine phosphoribosyltransferase (HPRT) gene in five patients with Lesch-Nyhan syndrome. Hum Genet. 1998;103:311–8.

    PubMed  CAS  Google Scholar 

  159. Kamatani N. Partial hypoxanthine phosphoribosyltransferase deficiency: unrecognized until adult ages. Intern Med. 1998;37:905–6.

    PubMed  CAS  Google Scholar 

  160. Liu G, Aral B, Zabot MT, Kamoun P, Ceballos-Picot I. The molecular basis of hypoxanthine-guanine phosphoribosyltransferase deficiency in French families; report of two novel mutations. Hum Mutat. 1998;Suppl 1:S88–90.

    PubMed  CAS  Google Scholar 

  161. Khattak FH, Morris IM, Harris K. Kelley-Seegmiller syndrome: a case report and review of the literature. Br J Rheumatol. 1998;37:580–1.

    PubMed  CAS  Google Scholar 

  162. Puig JG, Mateos FA, Torres RJ, Buno AS. Purine metabolism in female heterozygotes for hypoxanthine-guanine phosphoribosyltransferase deficiency. Eur J Clin Invest. 1998;28:950–7.

    PubMed  CAS  Google Scholar 

  163. Chang SJ, Chang JG, Chen CJ, Wang JC, Ou TT, Chang KL, Ko YC. Identification of a new single nucleotide substitution on the hypoxanthine-guanine phosphoribosyltransferase gene (HPRT(Tsou)) from a Taiwanese aboriginal family with severe gout. J Rheumatol. 1999;26:1802–7.

    PubMed  CAS  Google Scholar 

  164. O’Neill P, Trombley L, Gundel M, Hunter T, Nicklas JA, Ferreira ML, Bugallo MJ, Farias AC, Lohr A, Diamantopoulos M, Raskin S. Identification of a new Lesch-Nyhan syndrome mutation (HPRTBrasil) and analysis of potentially heterozygous females. Arq Neuropsiquiatr. 1999;57:907–11.

    PubMed  Google Scholar 

  165. Willers I, Bolz H, Wehnert M, Gal A. Eighteen novel mutations in patients with Lesch-Nyhan syndrome or partial hypoxanthine phosphoribosyltransferase deficiency. J Inherit Metab. 1999;22:845–6.

    CAS  Google Scholar 

  166. De Gregorio L, Nyhan WL, Serafin E, Chamoles NA. An unexpected affected female patient in a classical Lesch-Nyhan family. Mol Genet Metab. 2000;69:263–8.

    PubMed  Google Scholar 

  167. Torres RJ, Mateos FA, Molano J, Gathoff BS, O’Neill JP, Gundel RM, Trombley L, Puig JG. Molecular basis of hypoxanthine-guanine phosphoribosyltransferase deficiency in thirteen Spanish families. Hum Mutat. 2000;15:383.

    PubMed  CAS  Google Scholar 

  168. Zoref-Shani E, Feinstein S, Frishberg Y, Bromberg Y, Sperling O. Kelley-Seegmiller syndrome due to a unique variant of hypoxanthine-guanine phosphoribosyltransferase: reduced affinity for 5-phosphoribosyl-1-pyrophosphate manifested only at low, physiological substrate concentrations. Biochim Biophys Acta. 2000;500:197–203.

    Google Scholar 

  169. Lesch M, Nyhan WL. A familial disorder of uric acid metabolism and central nervous system function. Am J Med. 1964;36:561.

    PubMed  CAS  Google Scholar 

  170. Rubin CS, Balis ME, Piomelli S, Berman PH, Dancis J. Elevated AMP pyrophosphorylase activity in congenital IMP pyrophosphorylase deficiency (Lesch-Nyhan disease). J Lab Clin Med. 1969;74:732.

    PubMed  CAS  Google Scholar 

  171. Kelley WN. Hypoxanthine-guanine phosphoribosyltransferase deficiency in the Lesch-Nyhan syndrome and gout. Fed Proc. 1968;27:1047.

    PubMed  CAS  Google Scholar 

  172. Kelley WN. Studies on the adenine phosphoribosyltransferase enzyme in human fibroblasts lacking hypoxanthine-guanine phosphoribosyltransferase. J Lab Clin Med. 1971;77:33.

    PubMed  CAS  Google Scholar 

  173. Sweetman L, Nyhan WL. Further studies of the enzyme composition of mutant cells in X-linked uric aciduria. Arch Intern Med. 1974;130:214.

    Google Scholar 

  174. Gordon RB, Thompson L, Emmerson BT. Erythrocyte phosphoribosylpyrophosphate concentrations in heterozygotes for hypoxanthine-guanine phosphoribosyltransferase deficiency. Metabolism. 1974;23:921.

    PubMed  CAS  Google Scholar 

  175. Yip LC, Dancis J, Methieson B, Balis ME. Age-induced changes in adenosine monophosphate: pyrophosphate phosphoribosyltransferase from normal and Lesch-Nyhan erythrocytes. Biochemistry. 1974;13:2558.

    PubMed  CAS  Google Scholar 

  176. Fox IH, Kelley WN. Phosphoribosylpyrophosphate in man: biochemical and clinical significance. Ann Intern Med. 1971;74:424.

    PubMed  CAS  Google Scholar 

  177. Greene ML, Boyle JA, Seegmiller JE. Substrate stabilization: genetically controlled reciprocal relationship of 2 human enzymes. Science. 1970;167:337.

    Google Scholar 

  178. Nuki G, Lever J, Seegmiller JE. Biochemical characteristics of 8-azaguanine resistant human lymphoblast mutants selected in vitro. In: Sperling O, DeVries A, Wyngaarden JB, editors. Purine metabolism in man. New York: Plenum; 1975. p. 255.

    Google Scholar 

  179. Wood AW, Becker MA, Minna JD, Seegmiller JE. Purine metabolism in normal and thioguanine-resistant neuroblastoma. Proc Natl Acad Sci USA. 1973;70:3880.

    PubMed  CAS  Google Scholar 

  180. Pehlke DM, McDonald JA, Holmes EW, Kelley WN. Inosinic acid dehydrogenase activity in the Lesch-Nyhan syndrome. J Clin Invest. 1972;51:1398.

    PubMed  CAS  Google Scholar 

  181. Lommen EJP, De Abreu RA, Trijbels JMF, Edam A. The IMP dehydrogenase catalysed reaction in erythrocytes of normal individuals and patients with hypoxanthine-guanine phosphoribosyltransferase deficiency. Acta Paediatr Scand. 1974;63:140.

    PubMed  CAS  Google Scholar 

  182. Micheli V, Sestini S, Rocchigiani M, Jacomelli G, Manzoni F, Peruzzi L, Gathof BS, Zammarchi E, Pompucci G. Hypoxanthine-guanine phosphoribosyltransferase deficiency and erythrocyte synthesis of pyridine coenzymes. Life Sci. 1999;64:2479–87.

    PubMed  CAS  Google Scholar 

  183. Skaper SD, Seegmiller JE. Hypoxanthine-guanine phosphoribosyltransferase mutant glioma cells: diminished monoamine oxidase activity. Science. 1976;194:1171.

    PubMed  CAS  Google Scholar 

  184. Roth JA, Breakefield XO, Castiglione CM. Monoamine oxidase and catechol-o-methyltransferase in cultured human skin fibroblasts. Life Sci. 1976;19:1705.

    PubMed  CAS  Google Scholar 

  185. Breakefield XO, Castiglione CM, Edelstein SB. Monoamine oxidase activity decreased in cells lacking hypoxanthine phosphoribosyltransferase activity. Science. 1976;192:1018.

    PubMed  CAS  Google Scholar 

  186. Edelstein SB, Castiglione CM, Breakefield XO. Monoamine oxidase activity in normal and Lesch-Nyhan fibroblasts. J Neurochem. 1978;31:1247.

    PubMed  CAS  Google Scholar 

  187. Singh S, Willer I, Klus EM, Goedde HW. Monoamine oxidase and catechol-o-methyltransferase activity in cultured fibroblasts from patients with maple syrup urine disease, Lesch-Nyhan syndrome and healthy controls. Clin Genet. 1979;15:153.

    PubMed  CAS  Google Scholar 

  188. Kochersperger LM, Parker EL, Siciliano M, Darlington GJ, Denney IM. Assignment of genes for the human monoamine oxidase A and B to the X chromosome. J Neurosci Res. 1986;16:601.

    PubMed  CAS  Google Scholar 

  189. Zoref-Shani E, Sperling O. Dependence of the metabolic fate of IMP on the rate of total IMP synthesis. Studies in cultured fibroblasts from normal subjects and from purine-overproducing mutant patients. Biochim Biophys Acta. 1980;607:503.

    PubMed  CAS  Google Scholar 

  190. Puig JG, Mateos FA. Clinical and biochemical aspects of uric acid overproduction. Pharm World Sci. 1994;16:40.

    CAS  Google Scholar 

  191. Locke LF, Takagi N, Martin GR. Methylation of the HPRT gene on the inactive X occurs after chromosome inactivation. Cell. 1987;48:39.

    Google Scholar 

  192. Yen PH, Patel PI, Chinault AL, Mohandas T, Shapiro LJ. Differential methylation of hypoxanthine phosphoribosyltransferase genes on active and inactive human X-chromosomes. Proc Natl Acad Sci USA. 1984;81:1759.

    PubMed  CAS  Google Scholar 

  193. Locke LF, Melton DW, Caskey CT, Martin GR. Methylation of the mouse HPRT gene differs on the active and inactive X chromosomes. Mol Cell Biol. 1986;6:914.

    Google Scholar 

  194. Lester SC, Korn NJ, DeMars R. Derepression of genes on the human inactive X chromosome: evidence for differences in locus-specific rates of derepression and rates of transfer of active and inactive genes after DNA-mediated transformation. Somatic Cell Genet. 1982;8:265.

    PubMed  CAS  Google Scholar 

  195. Chapman VM, Kratzer PG, Siracusa LD, Quarantillo BA, Evans R, Liskay RM. Evidence for DNA modification in the maintenance of X-chromosome inactivation of adult mouse tissues. Proc Natl Acad Sci USA. 1982;79:5357.

    PubMed  CAS  Google Scholar 

  196. Liskay RM, Evans RJ. Inactive X chromosome DNA does not function in DNA-mediated cell transformation for the hypoxanthine phosphoribosyltransferase gene. Proc Natl Acad Sci USA. 1980;77:4895.

    PubMed  CAS  Google Scholar 

  197. Graves JAM. 5-Azacytidine-induced re-expression of alleles on the inactive X chromosome in a hybrid mouse cell line. Exp Cell Res. 1982;141:99.

    PubMed  CAS  Google Scholar 

  198. Venolia L, Gartler SM. Comparison of transformation efficiency of human active and inactive X-chromosomal DNA. Nature. 1983;302:82.

    PubMed  CAS  Google Scholar 

  199. Mohandas T, Sparkes RS, Shapiro LJ. Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science. 1981;211:393.

    PubMed  CAS  Google Scholar 

  200. Paterno GD, Adra CN, McBurney MW. X chromosome reactivation in mouse embryonal carcinoma cells. Mol Cell Biol. 1985;5:2705.

    PubMed  CAS  Google Scholar 

  201. Toniolo D, D’Urso M, Martini G, Persico M, Tufano V, Battistuzzi G, Luzzatto L. Specific ­methylation pattern at the 3′ end of the human housekeeping gene for glucose 6-phosphate dehydrogenase. EMBO J. 1984;3:1987.

    PubMed  CAS  Google Scholar 

  202. Hors-Cayla MC, Heuertz S, Frezal H. Coreactivation of four inactive X genes in a hamster x human hybrid and persistence of late replication of reactivated X chromosome. Somatic Cell Genet. 1983;9:645.

    PubMed  CAS  Google Scholar 

  203. Keith DH, Singer-Sam J, Riggs AD. Active X chromosome DNA is unmethylated at eight CCGG sites clustered in a guanine-plus-cytosine-rich island at the 5′ end of the gene for phosphoglycerate kinase. Mol Cell Biol. 1986;6:4122.

    PubMed  CAS  Google Scholar 

  204. Wolf SF, Dintzis T, Toniolo D, Persico G, Lunnen KD, Axelman J, Migeon BR. Complete concordance between glucose-6-phosphate dehydrogenase activity and hypomethylation of 3′ CpG clusters: Implications for X chromosome dosage compensation. Nucleic Acids Res. 1984;12:9333.

    PubMed  CAS  Google Scholar 

  205. Wolf SF, Jolly DJ, Lunnen KD, Friedman T, Migeon BR. Methylation of the hypoxanthine phosphoribosyltransferase locus on the human X chromosome: implications for X-chromosome inactivation. Proc Natl Acad Sci USA. 1984;81:2806.

    PubMed  CAS  Google Scholar 

  206. Wolf SF, Migeon BR. Clusters of CpG dinucleotides implicated by nuclease hypersensitivity as control elements of housekeeping genes. Nature. 1985;314:467.

    PubMed  CAS  Google Scholar 

  207. Migeon BR, Holland MM, Driscoll DJ, Robinson JC. Programmed demethylation in CpG islands during human fetal development. Somat Cell Mol Genet. 1991;17:159.

    PubMed  CAS  Google Scholar 

  208. Lock LF, Takagi N, Martin GR. Methylation of the Hprt gene on the inactive X occurs after chromosome inactivation. Cell. 1987;48:39.

    PubMed  CAS  Google Scholar 

  209. Marcus S, Steen AM, Andersson B, Lambert B, Kristoffersson U, Francke U. Mutation analysis and prenatal diagnosis in a Lesch-Nyhan family showing non-random X inactivation interfering with carrier detection. Hum Genet. 1992;89:395.

    PubMed  CAS  Google Scholar 

  210. Hornstra IK, Yang TP. Multiple in vivo footprints are specific to the active allele of the X-linked human hypoxanthine phosphoribosyltransferase gene 5′ region: implications for X chromosome inactivation. Mol Cell Biol. 1992;12:5345–54.

    PubMed  CAS  Google Scholar 

  211. Hornstra IK, Yang TP. High-resolution methylation analysis of the human hypoxanthine phosphoribosyltransferase gene 5′ region on the active and inactive X chromosomes: correlation with binding sites for transcription factors. Mol Cell Biol. 1994;14:1419–30.

    PubMed  CAS  Google Scholar 

  212. Park JG, Chapman VM. CpG island promoter region methylation patterns of the inactive-X-chromosome hypoxanthine phosphoribosyltransferase (Hprt) gene. Mol Cell Biol. 1994;14:7975–83.

    PubMed  CAS  Google Scholar 

  213. Subramanian PS, Chinault AC. Replication timing properties of the human HPRT locus on active, inactive and reactivated X chromosomes. Somat Cell Mol Genet. 1997;23:97–109.

    PubMed  CAS  Google Scholar 

  214. Disteche CM. Escape from X inactivation in human and mouse. Trends Genet. 1995;11:17–22.

    PubMed  CAS  Google Scholar 

  215. Disteche CM. Escapees on the X chromosome. Proc Natl Acad Sci USA. 1999;96:14180–2.

    PubMed  CAS  Google Scholar 

  216. Carrel L, Cottle AA, Goglin KC, Willard HF. A first-generation X-inactivation profile of the human X chromosome. Proc Natl Acad Sci USA. 1999;96:14440–4.

    PubMed  CAS  Google Scholar 

  217. Moro F, Ogg CS, Simmonds HA, Cameron JS, Chantler C, McBride MB, Duley JA, Davies PM. Familial juvenile gouty nephropathy with renal urate hypoexcretion preceding renal disease. Clin Nephrol. 1991;35:263.

    PubMed  CAS  Google Scholar 

  218. Simmonds HA. 2,8-dihyroxyadenine lithiasis – epidemiology, pathogenesis and therapy. In: Verhandlungen der Deutschen Gesellschaft fur Innere Medizin, 92 band. Munchen: JF Bergman Verlag; 1986. p. 503.

    Google Scholar 

  219. Kelley WN, Levy RI, Rosenbloom FM, Henderson JF, Seegmiller JE. Adenine phosphoribosyltransferase deficiency – a previously undescribed genetic defect in man. J Clin Invest. 1968;47:2281.

    PubMed  CAS  Google Scholar 

  220. Delbarre F, Auscher C, Amor B, DeGery A, Cartier P, Hamlet M. Gout with adenine phosphoribosyltransferase deficiency. Biomedicine. 1974;21:82.

    PubMed  CAS  Google Scholar 

  221. Henderson JF, Miller HR, Kelley WN, Rosenbloom FM, Seegmiller JE. Kinetic studies of mutant human adenine phosphoribosyltransferase. Can J Biochem. 1968;46:703.

    PubMed  CAS  Google Scholar 

  222. Dean BM, Watts RWE, Westwick WJ. Human erythrocyte AMP pyrophosphate phosphoribosyltransferase (EC 2.4.2.7). FEBS Lett. 1968;1:179.

    PubMed  CAS  Google Scholar 

  223. Fox IH, Meade JC, Kelley WN. Adenine phosphoribosyltransferase deficiency in man. Report of a second family. Am J Med. 1973;55:614.

    PubMed  CAS  Google Scholar 

  224. Srivastava SK, Beutler E. Purification and kinetic studies of adenine phosphoribosyltransferase from human erythrocytes. Arch Biochem Biophys. 1971;142:426.

    PubMed  CAS  Google Scholar 

  225. Hori M, Henderson JF. Kinetic studies of adenine phosphoribosyltransferase. J Biol Chem. 1966;241:3404.

    PubMed  CAS  Google Scholar 

  226. Krenitsky TA, Neil SM, Elion GB, Hitchings GH. Adenine phosphoribosyltransferase from monkey liver. J Biol Chem. 1969;244:4779.

    PubMed  CAS  Google Scholar 

  227. Taylor MW, Sahota A. Cellular resistance to adenine analogues. In: Gupta RS, editor. Drug resistance in mammalian cells, Antimetabolites and cytotoxic analogs, vol. 1. Boca Raton: CRC; 1989. p. 111.

    Google Scholar 

  228. Koyama H, Kodama H. Adenine phosphoribosyltransferase deficiency in cultured mouse mammary tumor FM3A cells resistant to 4-carbamoylimidazolium-5-olate. Cancer Res. 1982;42:4210.

    PubMed  CAS  Google Scholar 

  229. Arnold WJ. Purine salvage enzymes. In: Kelley WN, Weiner IM, editors. Uric acid. Berlin: Springer; 1978. p. 61.

    Google Scholar 

  230. Wilson JM, O’Toole TE, Argos P, Shewach DS, Daddona PE, Kelley WN. Human adenine phosphoribosyltransferase: complete amino acid sequence of the erythrocyte enzyme. J Biol Chem. 1986;261:13677.

    PubMed  CAS  Google Scholar 

  231. Kamatani N. Adenine phosphoribosyltransferase (APRT). Nippon Rinsho. 1996;54:3213–9.

    PubMed  CAS  Google Scholar 

  232. Kahan B, Held KR, DeMars R. The locus for human adenine phosphoribosyltransferase on chromosome No. 16. Genetics. 1974;78:1143.

    PubMed  CAS  Google Scholar 

  233. Tischfield JA, Ruddle FH. Assignment of the gene for adenine phosphoribosyltransferase to human chromosome 16 by mouse-human somatic cell hybridization. Proc Natl Acad Sci USA. 1974;71:45.

    PubMed  CAS  Google Scholar 

  234. Fratini A, Simmers RN, Callen DF, Hyland VJ, Tischfield JA, Stambrook PJ, Sutherland GR. A new location for the human adenine phosphoribosyltransferase gene (APRT) distal to the haptoglobin (HP) and fra (16)(q23)(FRA16D) loci. Cytogenet Cell Genet. 1986;43:10.

    PubMed  CAS  Google Scholar 

  235. Van Acker KJ, Simmonds HA, Potter CF, Sahota A. Inheritance of adenine phosphoribosyltransferase (APRT) deficiency. Adv Exp Med Biol. 1980;122A:349.

    PubMed  Google Scholar 

  236. Murray AM, Drobetsky E, Arrand JE. Cloning the complete human adenine phosphoribosyltransferase gene. Gene. 1984;31:233.

    PubMed  CAS  Google Scholar 

  237. Stambrook PJ, Dush MK, Trill JJ, Tischfield JA. Cloning of a functional human adenine phosphoribosyltransferase (APRT) gene: Identification of a restriction fragment length polymorphism and preliminary analysis of DNAs from APRT-deficient families and cell mutants. Somat Cell Mol Genet. 1984;10:359.

    PubMed  CAS  Google Scholar 

  238. Tischfield JA, Trill JJ, Dush MK, Stambrook PJ. Polymorphism within the human adenine transferase (APRT) locus. Genetics. 1984;107:s107.

    Google Scholar 

  239. Ogasawara N, Goto H. Restriction fragment length polymorphisms of HPRT and APRT genes in Japanese population. Adv Exp Med Biol. 1989;253A:461.

    PubMed  CAS  Google Scholar 

  240. Arrand JE, Murray AM, Spurr N. Sph I restriction fragment length polymorphism on human chromosome 16 detected with an APRT gene probe. Nucleic Acids Res. 1987;15:9615.

    PubMed  CAS  Google Scholar 

  241. Kamatani N, Kuroshima S, Hakoda M, Palella TD, Hidaka Y. Crossovers within a short DNA sequence indicate a long evolutionary history of the APRT*J mutation. Hum Genet. 1990;85:600.

    PubMed  CAS  Google Scholar 

  242. Broderick TP, Schaff DA, Bertino AM, Dush MK, Tischfield JA, Stambrook PJ. Comparative anatomy of the human APRT gene and enzyme. Nucleotide sequence divergence and conservation of a nonrandom CpG dinucleotide arrangement. Proc Natl Acad Sci USA. 1987;84:3349.

    PubMed  CAS  Google Scholar 

  243. Briggs MR, Kadonaga JT, Bell SP, Tijian R. Purification and biochemical characterization of the promoter specific transcription factor, Spl. Science. 1986;234:47.

    PubMed  CAS  Google Scholar 

  244. Keshet I, Yisraeli J, Cedar H. Effect of regional DNA methylation on gene expression. Proc Natl Acad Sci USA. 1985;82:2560.

    PubMed  CAS  Google Scholar 

  245. Frank D, Keshet I, Shani M, Levine A, Razin A, Cedar H. Demethylation of CpG islands in embryonic cells. Nature. 1991;351:239.

    PubMed  CAS  Google Scholar 

  246. Park J-H, Hershey HV, Taylor MW. Housekeeping genes. In: Simonsen CC, Shepard M, editors. Molecular genetics of mammalian cells. New York: Macmillan; 1986. p. 79.

    Google Scholar 

  247. Simmonds HA, Van Acker KJ, Cameron JS, Snedden W. The identification of 2,8-dihydroxyadenine, a new component of urinary stones. Biochem J. 1976;157:485.

    PubMed  CAS  Google Scholar 

  248. Debray H, Cartier P, Temstet A, Cendron J. Child’s urinary lithiasis revealing a complete deficit in adenine phosphoribosyltransferase. Pediatr Res. 1976;10:762.

    PubMed  CAS  Google Scholar 

  249. Van Acker KJ, Simmonds HA, Potter CF, Cameron JS. Complete deficiency of adenine phosphoribosyltransferase: report of a family. N Engl J Med. 1977;297:127.

    PubMed  Google Scholar 

  250. Barratt TM, Simmonds HA, Cameron JS, Potter CF, Rose GA, Arkell DG, Williams DI. Complete deficiency of adenine phosphoribosyltransferase. A third case presenting as renal stones in a young child. Arch Dis Child. 1979;54:25.

    PubMed  CAS  Google Scholar 

  251. Takemoto M, Nagano S. Urolithiasis containing 2,8-dihydroxyadenine: report of a case. Acta Urol Jpn. 1979;25:265.

    Google Scholar 

  252. Osada T, Inoue T, Hirano A, Tanaka K, Ogita Z, Isobe M, Hayashi S. A case of 2,8-dihydroxyadenine lithiasis revealing a complete deficiency of adenine phosphoribosyltransferase. J Clin Urol Jpn. 1980;71:981.

    Google Scholar 

  253. Cartier P, Hamet M, Vincens A, Perignon JL. Complete adenine phosphoribosyltransferase (APRT) deficiency in two siblings: report of a new case. Adv Exp Med Biol. 1980;122A:343.

    PubMed  CAS  Google Scholar 

  254. Schabel F, Doppler W, Hirsch-Kauffmann M, Glatzl J, Schweiger M, Berger H, Heinz-Erian P. Hereditary deficiency of adenine phosphoribosyltransferase. Paediatr Padol. 1980;15:233.

    CAS  Google Scholar 

  255. Gault MH, Simmonds HA, Snedden W, Dow D, Churchill DN, Penney H. Urolithiasis due to 2,8-dihydroxyadenine in an adult. N Engl J Med. 1981;305:1570.

    PubMed  CAS  Google Scholar 

  256. Asper R, Schmucki O. Diagnostik und Therapie der 2,8-Dihydroxyadenine Lithiasis. In: Gasser G, Vahlensieck W, editors. Pathogenese und Klinik der Harnsteine IX. Darmstadt: Steinkopff Verlag; 1982. p. 274.

    Google Scholar 

  257. Joost J, Doppler W. The 2,8-dihydroxyadenine stone in childhood. Urology. 1982;20:67.

    PubMed  CAS  Google Scholar 

  258. Witten FR, Morgan JE, Foster JG, Glenn JF. 2,8-dihydroxyadenine urolithiasis: review of the literature and report of a case in the United States. J Urol. 1983;130:938.

    PubMed  CAS  Google Scholar 

  259. Simmonds HA, Van Acker KJ. Adenine phosphoribosyltransferase deficiency: 2,8-dihydroxyadenine lithiasis. In: Stanbury JB, Wyngaarden JB, Fredrickson DS, Goldstein JL, Brown MS, editors. The metabolic basis of inherited disease. 5th ed. New York: McGraw-Hill; 1983. p. 1144.

    Google Scholar 

  260. Chevet D, Le Pogamp P, Gie S, Gary J, Daudon M, Hamet M. 2,8-dihydroxyadenine (2,8-DHA) urolithiasis in an adult – complete adenine phosphoribosyltransferase deficiency – family study. Kidney Int. 1984;26:226.

    Google Scholar 

  261. Kishi T, Kidani K, Komazawa Y, Sakura N, Matsuura R, Kobayashi M, Tanabe A, Hyodo S, Kittaka E, Sakano T. Complete deficiency of adenine phosphoribosyltransferase: report of three cases and immunologic and phagocytic investigations. Pediatr Res. 1984;18:30.

    PubMed  CAS  Google Scholar 

  262. Szonyi P, Bereni M, Toth J. A rare enzyme deficiency causing formation of 2,8-dihydroxyadenine (purine body) calculi. Int Urol Nephrol. 1985;17:231.

    PubMed  CAS  Google Scholar 

  263. Simmonds HA. 2,8-dihydroxyadenine lithiasis. Clin Chim Acta. 1986;160:103.

    PubMed  CAS  Google Scholar 

  264. Manyak MJ, Frensilli FJ, Miller HC. 2,8-dihydroxyadenine urolithiasis: report of an adult case in the United States. J Urol. 1987;137:312.

    PubMed  CAS  Google Scholar 

  265. Gliklich D, Gruber HE, Matas AJ, Tellis VA, Karwa G, Finley K, Salem C, Soberman R, Seegmiller JE. 2,8-dihydroxyadenine lithiasis: report a case first diagnosed after renal transplant. Q J Med. 1988;69:785.

    Google Scholar 

  266. Laxdal T, Jonason TA. Adenine phosphoribosyltransferase deficiency in Iceland. Acta Med Scand. 1988;224:621.

    PubMed  CAS  Google Scholar 

  267. Chiba P, Zwiauer K, Muller MM. Characterization of an adenine phosphoribosyltransferase deficiency. Clin Chim Acta. 1988;172:141.

    PubMed  CAS  Google Scholar 

  268. Usenius JP, Ruapuro ML, Usenius R. Adenine phosphoribosyltransferase deficiency: 2,8-dihydroxyadenine urolithiasis in a 48-year-old woman. Br J Urol. 1988;62:521.

    PubMed  CAS  Google Scholar 

  269. Jung P, Becht E, Ziegler M, Bommert R, Bach K, Haas HJ. New diagnostic and therapeutic aspects of 2,8-dihydroxyadenine lithiasis. Another case of complete adenine phosphoribosyltransferase deficiency. Eur Urol. 1988;14:493.

    PubMed  CAS  Google Scholar 

  270. Hesse A, Miersch WD, Classen A, Thon A, Doppler W. 2,8-dihydroxyadeninuria: laboratory diagnosis and therapy control. Urol Int. 1988;43:174.

    PubMed  CAS  Google Scholar 

  271. Lamontagne AE. 2,8-dihydroxyadenine urolithiasis: report of a woman in the United States. J Urol. 1989;142:369.

    PubMed  Google Scholar 

  272. Gleeson MJ, Griffith DP. Distribution of patients with 2,8-dihydroxyadenine urolithiasis and adenine phosphoribosyltransferase deficiency in Japan. J Urol. 1989;142:834.

    PubMed  CAS  Google Scholar 

  273. Honeke K, Butz M. 2,8-dihydroxyadenin harnstein: die bedeuting der exakten physikalischen steinanalyse. Urologe. 1989;28:361.

    Google Scholar 

  274. Coupris L, Champion G, Duverne C, Varlet F, Rataajczak A. La lithiase 2,8-dihydroxyadenique. 2 nouvelles observations p’ediatriques d’un de’ficit me’tabolique me’conna. Apport de la lithotripsie extra-corporelle. Chir Pediatr. 1990;31:26.

    PubMed  CAS  Google Scholar 

  275. Leusmann DB, Schmidt G. Urolithiasis bei 2,8-dihydroxyadenurie: vorstelling von drei wieteren Fallen. Z Urol Nephrol. 1990;83:383.

    PubMed  CAS  Google Scholar 

  276. Frick J, Sarica K, Kohle RF, Kunit G. Long-term follow-up after extracorporeal shock wave lithotripsy in children. Eur Urol. 1991;19:225.

    PubMed  CAS  Google Scholar 

  277. Simmonds HA, Sahota AS, Van Acker KJ. Adenine phosphoribosyltransferase deficiency and 2,8-­dihydroxyadenine lithiasis. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic and molecular bases of inherited disease, vol. II. New York: McGraw-Hill, Inc.; 1995. p. 1707.

    Google Scholar 

  278. Katamatani N, Terai C, Kim CY, Chen CL, Yamanaka H, Hakoda M, Totokawa S, Kashiwazaki S. The origin of the most common mutation of adenine phosphoribosyltransferase among Japanese goes back to a prehistoric era. Hum Genet. 1996;98:596–600.

    Google Scholar 

  279. Kuroda M, Miki T, Kiyohara H, Usami M, Nakamura T, Kotake T, Takemoto M, Sonoda T. Urolithiasis composed of 2,8-dihydroxyadenine due to partial deficiency of adenine phosphoribosyltransferase. Jpn J Urol. 1980;71:283.

    CAS  Google Scholar 

  280. Takeuchi F, Matsuta K, Miyamoto T, Enomoto S, Fujimori S, Akaoka I, Kamatani N, Nishioka K. Rapid method for the diagnosis of partial adenine phosphoribosyltransferase deficiency causing 2,8-dihydroxyadenine urolithiasis. Hum Genet. 1985;71:167.

    PubMed  CAS  Google Scholar 

  281. Kamatani N, Takeuchi F, Nishida Y, Yamanaka H, Nishioka K, Tatara K, Fujimori S, Kaneko K, Akaoka I, Tofuku Y. Severe impairment in adenine metabolism with a partial deficiency of adenine phosphoribosyltransferase. Metabolism. 1985;34:164.

    PubMed  CAS  Google Scholar 

  282. Fujimoro S, Akaoka I, Sakamoto K, Yamanaka H, Nishioka K, Kamatani N. Common characteristics of mutant adenine phosphoribosyltransferase from four separate Japanese families with 2,8-dihydroxyadenine urolithiasis associated with partial enzyme deficiencies. Hum Genet. 1985;7:71.

    Google Scholar 

  283. Kamatani N, Terai C, Kuroshima S, Nishioka K, Mikanagi K. Genetic and clinical studies on 19 families with adenine phosphoribosyltransferase deficiencies. Hum Genet. 1987;75:163.

    PubMed  CAS  Google Scholar 

  284. Kamatani N, Kuroshima S, Terai C, Kawai K, Mikanagi K, Nishioka K. Selection of human cells having two different types of mutations in single cells: application to the diagnosis of the heterozygous state for a unique type adenine phosphoribosyltransferase deficiency. Hum Genet. 1987;76:148.

    PubMed  CAS  Google Scholar 

  285. Kamatani N, Sonoda T, Nishioka K. Distribution of patients with 2,8-dihydroxyadenine urolithiasis and adenine phosphoribosyltransferase deficiency in Japan. J Urol. 1988;140:1470.

    PubMed  CAS  Google Scholar 

  286. Kamatani N, Kuroshima S, Yamanaka H, Nakashe S, Take H, Hakoda M. Identification of a compound heterozygote for adenine phosphoribosyltransferase deficiency (APRT*J/APRT*Q0) leading to 2,8-dihydroxyadenine urolithiasis. Hum Genet. 1990;85:500.

    PubMed  CAS  Google Scholar 

  287. Sahota A, Chen J, Behzadian MA, Ravindra R, Takeuchi H, Stambrook PJ, Tischfield JA. 2,8-dihydroxyadenine lithiasis in a Japanese patient heterozygous at the adenine phosphoribosyltransferase locus. Am J Hum Genet. 1991;48:983.

    PubMed  CAS  Google Scholar 

  288. Kamatani N, Hakoda M, Otsuka S, Yoshikawa H, Kashiqazaki S. Only three mutations account for almost all defective alleles causing adenine phosphoribosyltransferase deficiency in Japanese patients. J Clin Invest. 1992;90:130.

    PubMed  CAS  Google Scholar 

  289. Sevcik J, Adam T, Mazacova H. A fast and simple screening method for detection of 2,8-dihydroxyadenine urolithiasis by capillary zone electrophoresis. Clin Chim Acta. 1996;245:85–92.

    PubMed  CAS  Google Scholar 

  290. Greenwood MC, Dillon MJ, Simmonds HA, Barratt TM, Pincott JR, Metrewelli C. Renal failure due to 2,8-dihydroxyadenine urolithiasis. Eur J Pediatr. 1982;138:346.

    PubMed  CAS  Google Scholar 

  291. Emmerson BT, Gordon RB, Thompson L. Adenine phosphoribosyltransferase deficiency: its inheritance and occurrence in a female with gout and renal disease. Aust N Z J Med. 1975;5:440.

    PubMed  CAS  Google Scholar 

  292. O’Toole TE, Wilson JM, Gault MH, Kelley WN. Human adenine phosphoribosyltransferase: characterization from subjects with a deficiency of enzyme activity. Biochem Genet. 1983;21:1121.

    PubMed  Google Scholar 

  293. Steglich C, DeMars R. Mutations causing deficiency of APRT in fibroblasts cultured from humans heterozygous for mutant APRT alleles. Somatic Cell Genet. 1982;8:115.

    PubMed  CAS  Google Scholar 

  294. Fujimori S, Akaoka I, Takeuchi F, Kanayama H, Tatara K, Nishioka K, Kamatani N. Altered kinetic properties of a mutant adenine phosphoribosyltransferase. Metabolism. 1986;35:187.

    PubMed  CAS  Google Scholar 

  295. Abe S, Hayasaka K, Narisawa K, Tada K, Okada G, Koyama H, Kurosa S, Kudoh M, Matushita K. Partial and complete adenine phosphoribosyltransferase deficiency associated with 2,8-dihydroxyadenine urolithiasis: kinetic and immunochemical properties of APRT. Enzyme. 1987;37:182.

    PubMed  CAS  Google Scholar 

  296. Kamatani N, Kuroshima S, Terai C, Hidaka Y, Palella TD, Nishioka K. Detection of an amino acid substitution in the mutant enzyme for a special type of adenine phosphoribosyltransferase (APRT) deficiency by sequence-specific protein cleavage. Am J Hum Genet. 1989;45:325.

    PubMed  CAS  Google Scholar 

  297. Fox IH, LaCroix S, Planet G, Moore M. Partial deficiency of adenine phosphoribosyltransferase in man. Medicine. 1977;56:515.

    PubMed  CAS  Google Scholar 

  298. Simmonds HA, Duley JA, Davies PM. Analysis of purine and pyrimidines in blood, urine, and other physiological fluids. In: Hommes F, editor. Techniques in diagnostic human biochemical genetics. A laboratory manual. New York: Wiley-Liss; 1991. p. 397.

    Google Scholar 

  299. Hakoda M, Yamanaka H, Kamatani N, Kamatani N. Diagnosis of heterozygote states for adenine phosphoribosyltransferase deficiency based on detection of in vivo somatic mutants in blood T cells: application to screening of heterozygotes. Am J Hum Genet. 1991;48:552.

    PubMed  CAS  Google Scholar 

  300. Dean BM, Perrett D, Simmonds HA, Sahota A, Van Acker KJ. Adenine and adenosine metabolism in intact erythrocytes deficient in adenosine monophosphate-pyrophosphate phosphoribosyltransferase: a study of two families. Clin Sci Mol Med. 1978;55:407.

    PubMed  CAS  Google Scholar 

  301. Doppler W, Hirsch-Kauffmann M, Schabel F, Schweiger M. Characterization of the biochemical basis of a complete deficiency of the adenine phosphoribosyltransferase (APRT). Hum Genet. 1981;57:404.

    PubMed  CAS  Google Scholar 

  302. Kojima T, Nishina T, Kitamura M, Kamatani N, Nishioka K. Reversed-phase high-performance liquid-chromatography of 2,8-dihydroxyadenine in serum and urine with electrochemical detection. Clin Chim Acta. 1989;181:109.

    PubMed  CAS  Google Scholar 

  303. Johnson LA, Gordon RB, Emmerson BT. Adenine phosphoribosyltransferase: a simple spectrophotometric assay and the incidence of mutation in the normal population. Biochem Genet. 1977;15:256.

    Google Scholar 

  304. Stenzel A, Banholzer P, Reiter S, Grobner W, Zollner N, Hegeman M, Pfab R. Activity of adenine phosphoribosyltransferase (APRT) in patients with renal failure and urolithiasis. In: Schwille PO, Smith LH, Robertson WG, Vahlensieck W, editors. Urolithiasis and clinical research. New York: Plenum Press; 1985. p. 347.

    Google Scholar 

  305. Srivastava SK, Villacorte D, Beutler E. Correlation between adenylate metabolising enzymes and adenine nucleotide levels of erythrocytes during blood storage in various media. Transfusion. 1972;12:190.

    PubMed  CAS  Google Scholar 

  306. Hidaka Y, Tarle SA, Fujimori S, Kamatani N, Kelley WN, Palella TD. Human adenine phosphoribosyltransferase deficiency. Demonstration of a single mutant allele common to the Japanese. J Clin Invest. 1988;81:945.

    PubMed  CAS  Google Scholar 

  307. Sahota A, Chen J, Asako K, Takeuchi H, Stambrook PJ, Tischfield JA. Identification of a common nonsense mutation in Japanese patients with type I adenine phosphoribosyltransferase deficiency. Nucleic Acids Res. 1990;18:5915.

    PubMed  CAS  Google Scholar 

  308. Mimori A, Hidaka Y, Wu VC, Tarle SA, Kamatani N, Kelley WN, Palella TD. A mutant allele common to type I adenine phosphoribosyltransferase deficiency in Japanese subjects. Am J Hum Genet. 1991;48:102.

    Google Scholar 

  309. Gathof BS, Sanota A, Gresser U, Chen J, Stambrook PJ, Tischfield JA, Zollner N. A splice mutation at the adenine phosphoribosyltransferase locus in a German family. Adv Exp Med Biol. 1991;309B:83.

    PubMed  CAS  Google Scholar 

  310. Sahota A, Chen J, Stambrook PJ, Tischfield JA. Genetic basis of adenine phosphoribosyltransferase deficiency. In: Gresser U, editor. Molecular genetics, biochemistry and clinical aspects of purine and pyrimidine metabolism. Heidelberg: Springer; 1993. p. 54.

    Google Scholar 

  311. Carothers AM, Urlaub G, Mucha J, Harvey RG, Chasin LA, Grunberger D. Splicing mutations in the CHO DHFR gene preferentially induced by (+/−) 3a,4b-dihydroxy-1a, 2a-epoxy-1,2,3,4-tetrahydro­benzo[c]phenambenzene. Proc Natl Acad Sci USA. 1990;87:5464.

    PubMed  CAS  Google Scholar 

  312. Chen J, Sahota A, Martin GF, Hakoda M, Kamatani N, Stambrook PJ, Tischfield JA. Analysis of germline and in vivo somatic mutations in the human adenine phosphoribosyltransferase genes: mutational hotspots at the intron 4 splice donor site and at codon 87. Mutat Res. 1993;287:217.

    PubMed  CAS  Google Scholar 

  313. Chen J, Sahota A, Laxdal T, Scrine M, Bowman S, Cui C, Stambrook PJ, Tischfield JA. Identification of a single missense mutation in the adenine phosphoribosyltransferase gene from five Icelandic patients and a British patient. Am J Hum Genet. 1991;49:251.

    CAS  Google Scholar 

  314. Laxdal T. 2,8-dihydroxyadenine crystalluria vs. urolithiasis. Lancet. 1992;340:184.

    PubMed  CAS  Google Scholar 

  315. Ohne T, Fujito A, Koga K, Imaide Y, Uchida M. 2,8-dihydroxyadenine urolithiasis due to partial deficiency of adenine phosphoribosyltransferase: a case report. Hinyokika Kiyo. 1998;44:725–8.

    PubMed  CAS  Google Scholar 

  316. Suzuki K, Kobayashi S, Kawamura K, Kuhara T, Tsugawa R. Family study of 2,8-dihyroxyadenine stone formation: report of two cases of a compound heterozygote for adenine phosphoribosyltransferase deficiency (APRT*J/APRT*Q0). Int J Urol. 1997;4:304–6.

    PubMed  CAS  Google Scholar 

  317. Wang L, Ou X, Sebasta I, Vondrak K, Krijt J, Elleder M, Poupetova H, Ledvinova J, Zeman J, Simmonds HA, Tischfield JA, Sahota A. Combined adenine phosphoribosyltransferase and N-acetylga­lactosamin-6-sulfate sulfatase deficiency. Mol Genet Metab. 1999;68:78–85.

    PubMed  CAS  Google Scholar 

  318. Baker E, Gua XH, Orsborn AM, Sutherland GR, Callen DF, Hopwood JJ, Morris CP. The morquio A syndrome (mucopolysaccharidosis IVA) gene maps to 16q24.3. Am J Hum Genet. 1993;52:96–8.

    PubMed  CAS  Google Scholar 

  319. Masuno M, Tomatsu S, Nakashima Y, Hori T, Fukuda S, Masue M, Sukegawa K, Orii T. Mucopolysaccharidosis IV A: assignment of the human N-acetylgalactosamine-6-sulfate sulfatase (GALNS) gene to chromosome 16q24. Genomics. 1993;16:777–8.

    PubMed  CAS  Google Scholar 

  320. Fukuda S, Tomatsu S, Masuno M, Ogawa T, Yamagishi A, Rezvi GM, Sukegawa K, Shimozawa N, Suzuki Y, Kondo N, Imaizumi K, Kuroki Y, Okabe T, Orii T. Mucopolysaccharidosis IVA: submicroscopic deletion of 16q24.3 and a novel R386C mutation of N-acetylgalactosamine-6-sulfate sulfatase gene in a classical Morquio disease. Hum Mutat. 1996;7:123–34.

    PubMed  CAS  Google Scholar 

  321. Yuen M, Fensom AH. Diagnosis of classical Morquio’s disease: N-acetylgalactosamine-6-sulfate sulphatase activity in cultured fibroblasts, leukocytes, amniotic cells and chorionic villi. J Inherit Metab Dis. 1985;8:80–6.

    PubMed  CAS  Google Scholar 

  322. Ceballos-Picot I, Perignon JL, Hamet M, Daudon M, Kamoun P. 2,8-dihydroxyadenine urolithiasis, an underdiagnosed disease. Lancet. 1992;339:1050.

    PubMed  CAS  Google Scholar 

  323. Peck CC, Bailey FJ, Moore GL. Enhanced solubility of 2,8-dihydroxyadenine (DOA) in human urine. Transfusion. 1977;17:383.

    PubMed  CAS  Google Scholar 

  324. Maddocks JL, Al-Safi SA. Adenine phosphoribosyltransferase deficiency: a simple diagnostic test. Clin Sci. 1988;75:217.

    PubMed  CAS  Google Scholar 

  325. Engle SJ, Stockelman MG, Chen J, Boivin G, Yum MN, Davies PM, Ying MY, Sahota A, Simmonds HA, Stambrook PJ, Tischfield JA. Adenine phosphoribosyltransferase-deficient mice develop 2,8-dihydroxyadenine nephrolithiasis. Proc Natl Acad Sci USA. 1996;93:5307–12.

    PubMed  CAS  Google Scholar 

  326. Redhead NJ, Selfridge J, Wu CL, Melton DW. Mice with adenine phosphoribosyltransferase deficiency develop fatal 2,8-dihydroxyadenine lithiasis. Hum Gene Ther. 1996;7:1491–502.

    PubMed  CAS  Google Scholar 

  327. Estepa-Maurice L, Hennequin C, Marfisi C, Lacour B, Daudon M. Fourier transform infrared microscopy identification of crystal deposits in tissues: clinical importance in various pathologies. Am J Clin Pathol. 1996;105:576–82.

    PubMed  CAS  Google Scholar 

  328. Stockelman MG, Lorenz JN, Smith FN, Boivin GP, Sahota A, Tischfield JA, Stambrook PJ. Chronic renal failure in a mouse model of human adenine phosphoribosyltransferase deficiency. Am J Physiol. 1998;275:F154–63.

    PubMed  CAS  Google Scholar 

  329. Tischfield JA. Molecular characterization of a novel mutation in APRT heterozygotes. In: Sahota A, Taylor M, editors. Purine and pyrimidine metabolism in man VIII. New York: Plenum Press; 1995. p. 675.

    Google Scholar 

  330. Sahota A, Bye S, Chen J, Khattar NH, Turker MS, Moro F, Simmonds HA, Emmerson BT, Gordon RB, Tischfield JA. Molecular characterization of a novel mutation in APRT heterozygotes. In: Sahota A, Taylor M, editors. Purine and pyrimidine metabolism in man VIII. New York: Plenum Press; 1995. p. 675.

    Google Scholar 

  331. Cohen A, Doyle D, Martin DW, Ammann AJ. Abnormal purine metabolism and purine overproduction in a patient deficient in purine nucleoside phosphorylase. N Engl J Med. 1976;295:1449.

    PubMed  CAS  Google Scholar 

  332. Simmonds HA, Fairbanks LD, Morris GS, Morgan G, Watson AR, Timms P. Central nervous system dysfunction and erythrocyte guanosine triphosphate depletion in purine nucleoside phosphorylase deficiency. Arch Dis Child. 1987;62:385.

    PubMed  CAS  Google Scholar 

  333. Simmonds HA, Webster DR, Becroft DMO, Potter CF. Purine and pyrimidine metabolism in hereditary orotid aciduria: some unexpected effects of allopurinol. Eur J Clin Invest. 1980;10:33.

    Google Scholar 

  334. Wilson JM, Daddona PE, Otaadese T, Kelley WN. Adenine phosphoribosyltransferase in patients with disorders of purine and pyrimidine metabolism. J Lab Clin Med. 1982;99:163.

    PubMed  CAS  Google Scholar 

  335. Edwards NL, Recker D, Airozo D, Fox IH. Enhanced purine salvage during allopurinol therapy: an important pharmacologic property in humans. J Lab Clin Med. 1981;98:673.

    PubMed  CAS  Google Scholar 

  336. Edwards NL, Recker D, Fox IH. Overproduction of uric acid in hypoxanthine-guanine phosphoribosyltransferase deficiency. J Clin Invest. 1979;63:922.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Newcombe, D.S. (2013). Purine Biochemistry. In: Robinson, D. (eds) Gout. Springer, London. https://doi.org/10.1007/978-1-4471-4264-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4264-5_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4263-8

  • Online ISBN: 978-1-4471-4264-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics