Skip to main content

The Prevalence and Risk Factors for Gout

  • Chapter
  • First Online:
Gout
  • 2322 Accesses

Abstract

Gout is the most common inflammatory rheumatic disease and is increasing in prevalence in the Western world in association with the epidemic of obesity. The association with obesity, the metabolic syndrome, hypertension, diet, and alcohol are described. In addition, genetic factors influence the frequency of gout, and especially handling of uric acid by the renal tubule is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choi HK, Ahu Z, Mount DB. Genetics of gout. Curr Opin Rheumatol. 2010;22:144–51.

    PubMed  Google Scholar 

  2. Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population. Arthritis Rheum. 2011;63:3136–41.

    PubMed  Google Scholar 

  3. Watanabe S, Kang DH, Feng L, et al. Uric acid, hominoid evolution, and the pathogenesis of salt-sensitivity. Hypertension. 2002;40:355.

    PubMed  CAS  Google Scholar 

  4. Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci USA. 1981;78:6858.

    PubMed  CAS  Google Scholar 

  5. Proctor P. Similar functions of uric acid and ascorbate in man? Nature. 1970;228:868.

    PubMed  CAS  Google Scholar 

  6. Johnson RJ, Gaucher EA, Sautin YY, et al. The planetary biology of ascorbate and uric acid and their relationship with the epidemic of obesity and cardiovascular disease. Med Hypotheses. 2008;71:22.

    PubMed  CAS  Google Scholar 

  7. Orawan E. The origin of man. Nature. 1955;175:683.

    Google Scholar 

  8. Alper Jr AB, Chen W, Yau L, et al. Childhood uric acid predicts adult blood pressure: the Bogalusa Heart Study. Hypertension. 2005;45:34.

    PubMed  CAS  Google Scholar 

  9. Mellen PB, Bleyer AJ, Erlinger TP, et al. Serum uric acid predicts incident hypertension in a biethnic cohort: the Atherosclerosis Risk in Communities Study. Hypertension. 2006;48:1037.

    PubMed  CAS  Google Scholar 

  10. Perlstein TS, Gumieniak O, Williams GH, et al. Uric acid and the development of hypertension: the Normative Aging Study. Hypertension. 2006;48:1031.

    PubMed  CAS  Google Scholar 

  11. Sundstrom J, Sullivan L, D’Agostino RB, et al. Relations of serum uric acid to longitudinal blood pressure tracking and hypertension incidence. Hypertension. 2005;45:28.

    PubMed  Google Scholar 

  12. Mazzali M, Hughes J, Kim YG, et al. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension. 2001;38:1101.

    PubMed  CAS  Google Scholar 

  13. Gruskin AB. The adolescent with essential hypertension. Am J Kidney Dis. 1985;6:86.

    PubMed  CAS  Google Scholar 

  14. Erdogan D, Gullu H, Caliskan M, et al. Relationship of serum uric acid to measures of endothelial function and atherosclerosis in healthy adults. Int J Clin Pract. 2005;59:1276.

    PubMed  CAS  Google Scholar 

  15. Saito I, Saruta T, Kondo K, et al. Serum uric acid and the renin-angiotensin system in hypertension. J Am Geriatr Soc. 1978;26:241.

    PubMed  CAS  Google Scholar 

  16. Zoccali C, Maio R, Mallamaci F, et al. Uric acid and endothelial dysfunction in essential hypertension. J Am Soc Nephrol. 2006;17:1466.

    PubMed  CAS  Google Scholar 

  17. Doehner W, Schoene N, Rauchhaus M, et al. Effects of xanthine oxidase inhibition with allopurinol on endothelial function and peripheral blood flow in hyperuricemic patients with chronic heart failure: results from 2 placebo-controlled studies. Circulation. 2002;105:2619.

    PubMed  CAS  Google Scholar 

  18. Farquharson CA, Butler R, Hill A, et al. Allopurinol improves endothelial dysfunction in chronic heart failure. Circulation. 2002;106:221.

    PubMed  CAS  Google Scholar 

  19. Mercure G, Vitale C, Cerquetani E, et al. Effect of hyperuricemia upon endothelial function in patients at increased cardiovascular risk. Am J Cardiol. 2004;94:932.

    Google Scholar 

  20. Corry DB, Eslami P, Yamamoto K, et al. Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system. J Hypertens. 2008;26:269.

    PubMed  CAS  Google Scholar 

  21. Brown CM, Dulloo AG, Yepuri G, Montani JP. Fructose ingestion acutely elevates blood pressure in healthy young humans. Am J Physiol Regul Integr Comp Physiol. 2008;294:R730.

    PubMed  CAS  Google Scholar 

  22. Wexler BC, Greenberg BP. Effect of increased serum urate levels on virgin rats with no arteriosclerosis versus breeder rats with preexisting arteriosclerosis. Metabolism. 1977;26:1309.

    PubMed  CAS  Google Scholar 

  23. Wexler BC. Allantoxamide-induced myocardial necrosis in Sprague–Dawley vs spontaneously hypertensive rats. Proc Soc Exp Biol Med. 1982;170:476.

    PubMed  CAS  Google Scholar 

  24. Kanby M, Ozkarar A, Selcoki Y, et al. Effect of treatment of hyperuricemia with allopurinol on blood pressure, creatinine clearance, and proteinuria in patients with normal renal function. Int Urol Nephrol. 2007;39:127.

    Google Scholar 

  25. Kang DH, Park SK, Lee IK, Johnson RJ. Uric acid-induced C-reactive protein expression: implication on cell proliferation and nitric oxide production of human vascular cells. J Am Soc Nephrol. 2005;16:3553.

    PubMed  CAS  Google Scholar 

  26. Toma I, Kang JJ, Meer EJ, Peti-Peterdi J. Uric acid triggers renin release via a macula densa-dependent pathway. J Am Soc Nephrol. 2007;18:156A.

    Google Scholar 

  27. Khosla UM, Zharikov S, Finch JL, et al. Hyperuricemia induces endothelial dysfunction. Kidney Int. 2005;67:1739.

    PubMed  Google Scholar 

  28. Talaat KM, EI-Sheikh AR. The effect of mild hyperuricemia on urinary transforming growth factor beta and the progression of chronic kidney disease. Am J Nephrol. 2007;27:435.

    PubMed  CAS  Google Scholar 

  29. Masuo K, Kawaguchi H, Mikami H, et al. Serum uric acid and plasma norepinephrine concentrations predict subsequent weight gain and blood pressure elevation. Hypertension. 2003;42:474.

    PubMed  CAS  Google Scholar 

  30. Ouyang X, Cerillo P, Sautin Y, et al. Fructose consumption as a risk factor for non-alcohol fatty liver disease. J Hepatol. 2008;48:993.

    PubMed  CAS  Google Scholar 

  31. Perez-Pozo SE, Schold J, Nakagawa T, et al. Excessive fructose intake induces the features of the metabolic syndrome in healthy adult men: role of uric acid in the hypertensive response. Int J Obes. 2009;84:354.

    Google Scholar 

  32. Feig Dl, Soletsky B, Johnson RJ. Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial. JAMA. 2009;301:270.

    Google Scholar 

  33. Cannon PJ, Stason WB, Demartini FE, et al. Hyperuricemia in primary and renal hypertension. N Engl J Med. 1966;275:457.

    PubMed  CAS  Google Scholar 

  34. Perlstein TS, Gumienieah O, Williams GH, et al. Uric acid and the development of hypertension: the Normative Aging Study. Hypertension. 2006;48:1031.

    PubMed  CAS  Google Scholar 

  35. Krishnan E, Svendsen K, Neaton JD, et al. MRFIT Research Group. Long-term cardiovascular mortality among middle-aged men with gout. Arch Intern Med. 2008;168:1104.

    PubMed  Google Scholar 

  36. Baker JF, Krishnan E, Chen L, Schumacher HR. Serum uric acid and cardiovascular disease: recent developments, and where do they leave us? Am J Med. 2005;118:816.

    PubMed  CAS  Google Scholar 

  37. Karagiannis A, Mikhailidis DP, Tzimalos K, et al. Serum uric acid as an independent prediction of early death after acute stroke. Circ J. 2007;71:1120.

    PubMed  CAS  Google Scholar 

  38. Syamala S, Li J, Shankar A. Association between serum uric acid and prehypertension among US adults. J Hypertens. 2007;25:1583.

    PubMed  CAS  Google Scholar 

  39. Viazzi F, Parodi D, Leoncini G, et al. Serum uric acid and target organ damage in primary hypertension. Hypertension. 2005;45:991.

    PubMed  CAS  Google Scholar 

  40. Iwashima Y, Horio T, Kamide K, et al. Uric acid, left ventricular mass index, and risk of cardiovascular disease in essential hypertension. Hypertension. 2006;47:195.

    PubMed  CAS  Google Scholar 

  41. Feig DI, Johnson RJ. Hyperuricemia in childhood primary hypertension. Hypertension. 2003;42:247.

    PubMed  CAS  Google Scholar 

  42. Sanchez-Lozada LG, Tapia E, Soto V, et al. Treatment with the xanthine oxidase inhibitor: febuxostat lowers uric acid and alleviates systemic and glomerular hypertension in experimental hyperuricaemia. Nephrol Dial Transplant. 2008;23:1179.

    PubMed  CAS  Google Scholar 

  43. Sanchez-Lozada LG, Tapia E, Santamaria J, et al. Mild hyperuricemia induces glomerular hypertension in normal and remnant kidney rats. Kidney Int. 2005;67:237.

    PubMed  Google Scholar 

  44. Kang DH, Nakagawa T, Feng L, et al. A role for uric acid in the progression of renal disease. J Am Soc Nephrol. 2002;13:2888.

    PubMed  CAS  Google Scholar 

  45. Iseki K, Oshira S, Tozawa M, et al. Significance of hyperuricemia on the early detection of renal failure in a cohort of screened subjects. Hypertens Res. 2001;24:691.

    PubMed  CAS  Google Scholar 

  46. Siu YP, Leung KT, Tong MK, et al. Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level. Am J Kidney Dis. 2006;47:51.

    PubMed  CAS  Google Scholar 

  47. Weimert NA, Tanke WF, Sims JJ. Allopurinol as a cardioprotectant during coronary artery bypass graft surgery. Ann Pharmacother. 2003;37:1708.

    PubMed  CAS  Google Scholar 

  48. Butler R, Morris AD, Belch JJF, et al. Allopurinol normalizes endothelial dysfunction in type 2 diabetics with mild hypertension. Hypertension. 2000;35:746.

    PubMed  CAS  Google Scholar 

  49. Strazzullo P, Barbato A, Galletti F, et al. Abnormalities of renal sodium handling in the metabolic syndrome: results of the Olivetti Heart Study. J Hypertens. 2006;24:1633.

    PubMed  CAS  Google Scholar 

  50. Nakagawa T, Kang DH, Feig D, et al. Unearthing uric acid: an ancient factor with recently found significance in renal and cardiovascular disease. Kidney Int. 2006;69:1722.

    PubMed  CAS  Google Scholar 

  51. Nieto FJ, Iribarren C, Gross MD, et al. Uric acid and serum antioxidant capacity: a reaction to atherosclerosis? Atherosclerosis. 2000;148:131.

    PubMed  CAS  Google Scholar 

  52. Zweir JL, Kuppusamy P, Lutty GA. Measurement of endothelial cell free radical generation: evidence for a central mechanism of free radical injury in postischemic tissue. Proc Natl Acad Sci USA. 1988;85:4046.

    Google Scholar 

  53. Strazzulo P, Puig JG. Uric acid and oxidative stress: relative impact on cardiovascular risk? Nutr Metab Cardiovasc Dis. 2007;17:409.

    Google Scholar 

  54. Saag KG, Choi HK. Epidemiology, risk factors, and lifestyle modifications in gout. Arthritis Res Ther. 2006;8 Suppl 1:S2.

    PubMed  Google Scholar 

  55. Schlesinger N. Dietary factors and hyperuricaemia. Curr Pharm Res. 2005;11:4133.

    CAS  Google Scholar 

  56. Fam AG. Gout, diet and the insulin resistance syndrome. J Rheumatol. 2002;29:1350.

    PubMed  CAS  Google Scholar 

  57. Choi HK, Atkinson K, Karlson EW, Curhan G. Obesity, weight change, hypertension, diuretic use, and risk of gout in men: the Health Professional’s Follow-up Study. Arch Intern Med. 2005;165:742.

    PubMed  Google Scholar 

  58. Roubenoff R, Klag MJ, Mead LA, et al. Incidence and risk factors for gout in white men. JAMA. 1991;266:3004.

    PubMed  CAS  Google Scholar 

  59. Chen SY, Shen ML. Juvenile gout in Taiwan associated with family history and overweight. J Rheumatol. 2007;34:2308.

    PubMed  Google Scholar 

  60. Glynn RJ, Campion EW, Silbert JE. Trends in serum uric acid levels 1961–1980. Arthritis Rheum. 1983;26:87.

    PubMed  CAS  Google Scholar 

  61. Rathmann W, Funkhouser E, Dyer AR, Roseman JM. Relations of hyperuricemia with the various components of the insulin resistance syndrome in young black and white adults: the Cardia Study. Coronary Artery Risk Development in Young Adults. Ann Epidemiol. 1998;8:250.

    PubMed  CAS  Google Scholar 

  62. Lee J, Sparrow D, Vokonas PS, et al. Uric acid and coronary heart disease risk: evidence for a role of uric acid in the obesity-insulin resistance syndrome. The Normative Aging Study. Am J Epidemiol. 1995;142:288.

    PubMed  CAS  Google Scholar 

  63. Dessein PH, Shipton EA, Stanwix AE, et al. Beneficial effects of weight loss associated with moderate calorie/carbohydrate restriction, and increased proportional intake of protein and unsaturated fat on serum urate and lipoprotein levels in gout: a pilot study. Ann Rheum Dis. 2000;59:539.

    PubMed  CAS  Google Scholar 

  64. Yamashita S, Matsuzawa Y, Tokunaga K, et al. Studies on the impaired metabolism of uric acid in obese subjects: marked reduction of renal urate excretion and its improvement by a low-calorie diet. Int J Obes. 1986;10:255.

    PubMed  CAS  Google Scholar 

  65. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on detection, education, and treatment of high blood cholesterol in adults (adult treatment panel 111) final report. Circulation. 2002;106:3143.

    Google Scholar 

  66. Grundy SM, Brower Jr HB, Gleeman JI, et al. Definition of metabolic syndrome: report of the National, Heart, Lung and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation. 2004;109:433.

    PubMed  Google Scholar 

  67. Grundy SM, Gleeman JI, Daniels SR, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005;112:2735, e297, e298.

    PubMed  Google Scholar 

  68. Pearson TA, Blair SN, Daniels SR, et al. AHA guidelines for primary prevention of cardiovascular disease and stroke: Consensus panel guide to comprehensive risk reduction for adult patients without coronary or other atherosclerotic vascular diseases. Circulation. 2002;106:388–391.

    Google Scholar 

  69. Trevian M, Liu J, Bahsas FB, et al. Syndrome X and mortality: a population-based study. Am J Epidemiol. 1998;148:958.

    Google Scholar 

  70. Ford ES. Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome. Diabetes Care. 2005;28:1769.

    PubMed  Google Scholar 

  71. Choi HK, Ford ES, Li C, Curhan G. Prevalence of the metabolic syndrome in patients with gout: the Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2007;57:109.

    PubMed  Google Scholar 

  72. Rho YH, Choi SJ, Lee YH, et al. The prevalence of metabolic syndrome in patients with gout: a multicenter study. J Korean Med Sci. 2005;20:1029.

    PubMed  CAS  Google Scholar 

  73. Puig JG, Martinez MA. Hyperuricemia, gout and the metabolic syndrome. Curr Opin Rheumatol. 2008;20:187.

    PubMed  CAS  Google Scholar 

  74. Chen SY, Chen CL, Shen ML. Manifestations of metabolic syndrome associated with male gout in different age strata. Clin Rheumatol. 2007;26:1453.

    PubMed  Google Scholar 

  75. Choi HK, Curhan G. Independent impact of gout on mortality and risk for coronary heart disease. Circulation. 2007;116:894.

    PubMed  Google Scholar 

  76. Krishnan E, Baker JF, Furst DE, Schumacher HR. Gout and the risk of acute myocardial infarction. Arthritis Rheum. 2006;54:2688.

    PubMed  CAS  Google Scholar 

  77. Vazez-Mellado J, Garcia CG, Vazquez SG, et al. Metabolic syndrome and ischemic heart disease in gout. J Clin Rheumatol. 2004;10:105.

    Google Scholar 

  78. Hjortnaes J, Algra A, Olijhoek J, et al. Serum uric acid levels and risk for vascular disease in patients with the metabolic syndrome. J Rheumatol. 2007;34:1882.

    PubMed  CAS  Google Scholar 

  79. Yoo HG, Lee SI, Chase HJ, et al. Prevalence of insulin resistance and metabolic syndrome in patients with gouty arthritis. Rheumatol Int. 2011;31(4):485–91. Epub 2009 Dec 20.

    PubMed  CAS  Google Scholar 

  80. Hernandez-Cuevas CB, Roque LH, Huerta-Sil G, et al. First acute attacks commonly precede features of the metabolic syndrome. J Clin Rheumatol. 2009;15:65.

    PubMed  Google Scholar 

  81. Kuo CF, See LC, Luo SF, et al. Gout: an independent risk factor for all-cause and cardiovascular mortality. Rheumatology. 2010;49:141.

    PubMed  Google Scholar 

  82. Mitsuhashi H, Yatsuya H, Matsushita K, et al. Uric acid and left ventricular hypertrophy in Japanese men. Circ J. 2009;73:667.

    PubMed  CAS  Google Scholar 

  83. Enomoto A, Kimura H, Chairoungdua A, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature. 2002;417:447.

    PubMed  CAS  Google Scholar 

  84. Bakker SJ, Gana RO, ter Maaten JC, et al. The potential role of adenosine in the pathophysiology of the insulin resistance syndrome. Atherosclerosis. 2001;155:283.

    PubMed  CAS  Google Scholar 

  85. Fransen R, Koomans HA. Adenosine and renal sodium handling: direct natriuresis and renal nerve-mediated antinatriuresis. J Am Soc Nephrol. 1995;6:1491.

    PubMed  CAS  Google Scholar 

  86. Balakrishnan VS, Coles GA, Williams JD. Effects of intravenous adenosine on renal function in healthy human subjects. Am J Physiol. 1996;271:F374.

    PubMed  CAS  Google Scholar 

  87. Balakrishnan VS, Coles GA, Williams JD. A role for endogenous adenosine in control of human glomerular and tubular function. Am J Physiol. 1993;265:F504.

    PubMed  CAS  Google Scholar 

  88. Puig JG, Ruilope LM. Uric acid as a cardiovascular risk factor in arterial hypertension. J Hypertens. 1999;17:869.

    PubMed  CAS  Google Scholar 

  89. Lopez-Suarez A, Elvira-Gonzalez J, Bascunana-Quirell A, et al. Serum urate levels and urinary uric acid excretion in subjects with the metabolic syndrome. Med Clin. 2006;126:321.

    Google Scholar 

  90. Novak S, Melkonian AK, Patel PA, et al. Metabolic syndrome-related conditions among people with and without gout: prevalence and resource use. Curr Med Res Opin. 2007;23:623.

    PubMed  Google Scholar 

  91. Fam AG. Gout, excess calories, purines, and beyond. Response to a urate-lowering diet. J Rheumatol. 2005;32:773.

    PubMed  CAS  Google Scholar 

  92. Choi HK, Lin S, Curhan G. Intake of purine-rich foods, protein and dairy products and relationship to serum levels of uric acid. The Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2005;52:283.

    PubMed  Google Scholar 

  93. Emmerson BT. The management of gout. N Engl J Med. 1996;334:445.

    PubMed  CAS  Google Scholar 

  94. Gibson T, Rodgers AV, Simmonds HA, et al. A controlled study of diet in patients with gout. Ann Rheum Dis. 1983;42:123.

    PubMed  CAS  Google Scholar 

  95. Bantle JP. Dietary fructose and metabolic syndrome and diabetes. J Nutr. 2009;139:1263S.

    PubMed  CAS  Google Scholar 

  96. Seegmiller JE, Dixon RM, Kemp GJ, et al. Fructose-induced aberration of metabolism in familial gout identified by 31 P magnetic resonance spectroscopy. Proc Natl Acad Sci USA. 1990;87:8326.

    PubMed  CAS  Google Scholar 

  97. Maenpaa PH, Raivio KO, Kekomaki MP. Liver adenine nucleotides: fructose-induced depletion and its effect on protein synthesis. Science. 1968;161:1253.

    PubMed  CAS  Google Scholar 

  98. Bode JC, Zelder O, Rumpelt HJ, Wittkamp U. Detection of liver adenosine phosphates and metabolic effects of intravenous infusion of fructose or sorbitol in man and in the rat. Eur J Clin Invest. 1973;3:436.

    PubMed  CAS  Google Scholar 

  99. Hultman E, Nilsson LH, Sahlin K. Adenine nucleotide content of human liver. Normal values and fructose-induced depletion. Scand J Clin Lab Invest. 1975;35:245.

    PubMed  CAS  Google Scholar 

  100. Nakagawa T, Tuttle K, Short RA, Johnson RJ. Hypothesis: fructose-induced hyperuricemia as a causal mechanism for the epidemic of the metabolic syndrome. Nat Clin Pract Nephrol. 2005;1:80.

    PubMed  CAS  Google Scholar 

  101. Choi JW, Ford ES, Gao X, Choi HK. Sugar-sweetened soft drinks, diet soft drinks, and serum uric acid level: the Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2008;59:109.

    PubMed  CAS  Google Scholar 

  102. Choi HK, Curhan G. Soft drinks, fructose consumption, and the risk of gout in men: perspective cohort study. BMJ. 2008;336:309.

    PubMed  Google Scholar 

  103. Choi HK, Atkinson K, Karlson EW, et al. Alcohol intake and risk of incident gout in men: a prospective study. Lancet. 2004;363:1277.

    PubMed  Google Scholar 

  104. Choi HK, Curhan G. Beer, liquor, and wine consumption and serum uric acid levels: the Third National Health and Nutrition Survey. Arthritis Rheum. 2005;51:1023.

    Google Scholar 

  105. Fox IH, Kelley N. Studies of the mechanism of ­fructose-induced hyperuricemia in man. Metabolism. 1972;21:713.

    PubMed  CAS  Google Scholar 

  106. Perheentupa J, Raivio K. Fructose-induced hyperuricaemia. Lancet. 1967;2:528.

    PubMed  CAS  Google Scholar 

  107. Stirpe F, Della Corte E, Bonetti E, et al. Fructose-induced hyperuricaemia. Lancet. 1970;2:1310.

    PubMed  CAS  Google Scholar 

  108. Emmerson BT. Effect of oral fructose on urate production. Ann Rheum Dis. 1974;33:276.

    PubMed  CAS  Google Scholar 

  109. Blakely SR, Hallfresch J, Reiser S, Prather ES. Long-term effects of moderate fructose feeding on glucose tolerance parameters in rats. J Nutr. 1981;111:307.

    PubMed  CAS  Google Scholar 

  110. Rizkalla SW, Boillot J, Trecottet V, et al. Effects of chronic dietary fructose with and without copper supplementation on glycaemic control, adiposity, insulin binding to adipocytes and glomerular basement membrane thickness in normal rats. Br J Nutr. 1993;70:199.

    PubMed  CAS  Google Scholar 

  111. Thorburn AW, Storlien LH, Jenkins AB, et al. Fructose-induced in vivo insulin resistance and elevated triglyceride levels in rats. Am J Clin Nutr. 1989;49:1155.

    PubMed  CAS  Google Scholar 

  112. Zavaroni I, Sander S, Scott S, Reaven GM. Effect of fructose feeding on insulin secretion and insulin action in the rat. Metabolism. 1980;29:970.

    PubMed  CAS  Google Scholar 

  113. Wu T, Giovannucci E, Pischon T, et al. Fructose, glycemic load, and quantity and quality of carbohydrate in relation to plasma C-peptide concentrations in US women. Am J Clin Nutr. 2004;80:1043.

    PubMed  CAS  Google Scholar 

  114. Gross LS, Li L, Ford ES, Liu S. Increased consumption of refined carbohydrates and the epidemic of type 2 diabetes in the United States: an ecologic assessment. Am J Clin Nutr. 2004;79:774.

    PubMed  CAS  Google Scholar 

  115. Bray GA, Nielsen SJ, Popkin BM. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr. 2007;79:537.

    Google Scholar 

  116. Galipeau D, Verma S, McNeill JH. Female rats are protected against fructose-induced changes in metabolism and blood pressure. Am J Heart Circ Physiol. 2002;283:H2478.

    CAS  Google Scholar 

  117. Vasudevan H, Xiang H, McNeill JH. Differential regulation of insulin resistance and hypertension by sex hormones in fructose-fed male rats. Am J Physiol Heart Circ Physiol. 2005;289:H1335.

    PubMed  CAS  Google Scholar 

  118. Muscelli E, Natali A, Bianchi S, et al. Effect of insulin on renal sodium and uric acid handling in essential hypertension. Am J Hypertens. 1996;9:746.

    PubMed  CAS  Google Scholar 

  119. Horton TJ, Gayles EC, Prach PA, et al. Female rats do not develop sucrose-induced insulin resistance. Am J Physiol. 1997;272:R1571.

    PubMed  CAS  Google Scholar 

  120. Ter Maaten JC, Voorburg A, Heine RJ, et al. Renal handling of urate and sodium during acute physiological hyperinsulinemia in healthy subjects. Clin Sci. 1997;92:51.

    PubMed  Google Scholar 

  121. Lin WY, Liu CS, Li TC, et al. In addition to insulin resistance and obesity, hyperuricemia is strongly associated with metabolic syndrome using definitions in Chinese populations: a population based study (Taichung Community Health Study). Ann Rheum Dis. 2008;67:432.

    PubMed  Google Scholar 

  122. Marasini B, Massarotti M. What rheumatologists should know about gout and cardiovascular disease. J Rheumatol. 2009;36:854.

    PubMed  Google Scholar 

  123. Capel WH, Eckel RH. Severe hypertriglyceridemia with a history of treatment failure. Nat Clin Pract Endocrinol Metab. 2005;1:53.

    Google Scholar 

  124. Consensus conference: treatment of hypertriglyceridemia. JAMA. 1984;251:1196

    Google Scholar 

  125. Yadav D, Pitchumoni CS. Issues in hyperlipidemic pancreatitis. J Clin Gastroenterol. 2003;36:54.

    PubMed  CAS  Google Scholar 

  126. Illingworth DR. Treatment of hyperlipidaemia. Br Med Bull. 1990;46:1025.

    PubMed  CAS  Google Scholar 

  127. Santamarina-Fojo S. The familial chylomicronemia syndrome. Endocrinol Metab Clin North Am. 1998;27:551.

    PubMed  CAS  Google Scholar 

  128. Baron TH, Morgan DE. Acute necrotizing pancreatitis. N Engl J Med. 1999;340:1412.

    PubMed  CAS  Google Scholar 

  129. Snaith M. Gout and alcohol. Rheumatology. 2004;43:1208.

    PubMed  CAS  Google Scholar 

  130. Snaith M. A (very) short history of diets for gout. Rheumatology. 2004;43:1054.

    PubMed  CAS  Google Scholar 

  131. Johnson RJ, Rideout BA. Uric acid and diet- insights into the epidemic of cardiovascular disease. N Engl J Med. 2004;350:1071.

    PubMed  CAS  Google Scholar 

  132. Sharpe CR. A case–control study of alcohol consumption and drinking behavior in patients with acute gout. Can Med Assoc J. 1984;131:563.

    PubMed  CAS  Google Scholar 

  133. Li S, Sanna S, Maschio A, et al. The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts. PLoS Genet. 2007;3:e194.

    PubMed  Google Scholar 

  134. Zumunik T, Boban M, Lane G, et al. Genome-wide association study of biochemical traits in Korcula Island. Croat Med J. 2009;50:23.

    Google Scholar 

  135. Wallace C, Newhouse SJ, Braund P, et al. Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia. Am J Hum Genet. 2008;82:139.

    PubMed  CAS  Google Scholar 

  136. Kotz M, Johnson T, Sanna S, et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet. 2009;5:e1000504.

    Google Scholar 

  137. Dehghan A, Kottgen A, Yang O, et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet. 2008;372:1953.

    PubMed  CAS  Google Scholar 

  138. Doring A, Gieger C, Mehta D, et al. SLC2AO influences uric acid concentrations with pronounced sex-specific effects. Nat Genet. 2008;40:430.

    PubMed  Google Scholar 

  139. McArdle PF, Parsa A, Chang YP, et al. Association of a common monosynonymous variant in GLUT9 and serum uric acid levels in old order Amish. Arthritis Rheum. 2008;58:2874.

    PubMed  Google Scholar 

  140. Vitart V, Rudan I, Haywood C, et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet. 2008;40:437.

    PubMed  CAS  Google Scholar 

  141. Preitner F, Bonny O, Laverriere A, et al. Glut9 is a major regulator of urate homeostasis and its genetic inactivation induces hyperuricosuria and urate nephropathy. Proc NatlAcad Sci USA. 2009;106:15501.

    PubMed  CAS  Google Scholar 

  142. Cheeseman C. Solute carrier family 2, member 9 and uric acid homeostasis. Curr Opin Nephrol Hypertens. 2009;18:428.

    PubMed  CAS  Google Scholar 

  143. Brandstatter A, Kiechl S, Kollerits B, et al. Sex-specific association of the putative fructose transporter SLC2A9 variants with uric acid levels is modified by BMI. Diabetes Care. 2008;31:1662.

    PubMed  Google Scholar 

  144. Le MT, Shafiu M, Mu W, Johnson RJ. SLC2A9 – a fructose transporter identified as a novel uric acid transporter. Nephrol Dial Transplant. 2008;23:2746.

    PubMed  CAS  Google Scholar 

  145. Caufield MJ, Munroe PB, O’Neill D, et al. SLC2A9 is a high-capacity urate transporter in humans. PLoS Med. 2008;5:e197.

    Google Scholar 

  146. Stark K, Reinhard W, Neureuther K, et al. Association of common polymorphisms in GLUT9 gene with gout but not with coronary artery disease in a large case–control study. PLoS One. 2008;3:e1948.

    PubMed  Google Scholar 

  147. Augustin R, Carayannopoulos MO, Dowd LO, et al. Identification and characterization of human glucose transporter-like protein-9 (GLUT9): alternative splicing alters trafficking. J Biol Chem. 2004;279:16229.

    PubMed  CAS  Google Scholar 

  148. Salas-Burgos A, Iserovich P, Zuniga F, et al. Predicting the three-dimensional structure of the human facilitative glucose transporter glut1 by a novel evolutionary homology strategy: insights on the molecular mechanism of substrate migration, and binding sites for glucose and inhibitory molecules. Biophys J. 2004;87:2990.

    PubMed  CAS  Google Scholar 

  149. Anzai N, Ichida K, Jutabha F, et al. Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans. J Biol Chem. 2008;283:26834.

    PubMed  CAS  Google Scholar 

  150. Phay JE, Hussain HB, Moley JF. Cloning and expression analysis of a novel member of the facilitative glucose transporter family, SLC2A9 (GLUT9). Genomics. 2000;66:217.

    PubMed  CAS  Google Scholar 

  151. Choi HK, Zhu Y, Mount DB. Genetics of gout. Curr Opin Rheumatol. 2010;22:144.

    PubMed  Google Scholar 

  152. Hollis-Moffatt JE, Xu X, Dalbeth N, et al. Role of the urate transporter SLC2A9 gene in susceptibility to gout in New Zealand Maori, Pacific Island, and Caucasian case–control sample sets. Arthritis Rheum. 2009;60:3485.

    PubMed  Google Scholar 

  153. Gao X, Oi L, Qiao N, et al. Intake of added sugar and sugar-sweetened drink and serum uric acid concentration in US men and women. Hypertension. 2007;50:306.

    PubMed  CAS  Google Scholar 

  154. Richardson S, Neama G, Phillips T, et al. Molecular characterization and partial eDNA cloning of facilitative glucose transporters expressed in human articular chondrocytes: stimulation of 2- deoxyglucose uptake by IGF-1 and elevated MMP-2 secretion by glucose deprivation. Osteoarthritis Cartilage. 2003;11:92.

    PubMed  CAS  Google Scholar 

  155. Shikhman AR, Brinson DC, Valbracht J, Lotz MK. Cytokine regulation of facilitated glucose transport in human articular chondrocytes. J Immunol. 2001;167:7001.

    PubMed  CAS  Google Scholar 

  156. Mobasheri A, Neama G, Bell S, et al. Human articular chondrocytes express three facilitative glucose transporter isoforms: GLUT1, GLUT3 and GLUT9. Cell Biol Int. 2002;26:297.

    PubMed  CAS  Google Scholar 

  157. Wu XW, Muzny OM, Lee CC, Caskey CT. Two independent mutational events in the loss of urate oxidase during hominoid evolution. J Mol Evol. 1992;34:78.

    PubMed  CAS  Google Scholar 

  158. Feig DL, Mazzali M, Kang DH, et al. Serum uric acid: a risk factor and a target for treatment? J Am Soc Nephrol. 2007;17:569.

    Google Scholar 

  159. Mount DB. Molecular physiology and the four-component model of renal urate transport. Curr Opin Nephrol Hypertens. 2005;14:460.

    PubMed  CAS  Google Scholar 

  160. Hediger MA, Johnson RJ, Miyazaki H, Endou H. Molecular physiology of urate transport. Physiology. 2005;20:125.

    PubMed  CAS  Google Scholar 

  161. Rafey MA, Lipowitz MS, Leal-Pinto E, Abramson RG. Uric acid transport. Curr Opin Nephrol Hypertens. 2003;12:511.

    PubMed  CAS  Google Scholar 

  162. Vasquez-Mellado J, Alvarado-Romano V, ­Burgos- Vargas R, et al. Homozygous frameshift mutation in the SLC22A12 gene in a patient with primary gout and high levels of uric acid. J Clin Pathol. 2007;60:947.

    Google Scholar 

  163. Ichida K, Hosoyamada M, Hisatome I, et al. Clinical and molecular analysis of patients with renal hypouricemia in Japan- influence of URAT1 gene on urinary urate excretion. J Am Soc Nephrol. 2004;15:164.

    PubMed  Google Scholar 

  164. Iwai N, Mino Y, Hosoyamada M, et al. A high prevalence of renal hypouricemia caused by inactive SLC22A12 in Japanese. Kidney Int. 2004;66:935.

    PubMed  CAS  Google Scholar 

  165. Taniguchi A, Urano W, Yamanaka M, et al. A common mutation in an organic anion transporter gene SLC22A12, is a suppressing factor for the development of gout. Arthritis Rheum. 2005;52:2576.

    PubMed  CAS  Google Scholar 

  166. Zhang W, Doherty M, Bardin T, et al. EULAR evidence-based recommendations for gout. Part II: management. Report of a task force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). Ann Rheum Dis. 2006;65:1312.

    PubMed  CAS  Google Scholar 

  167. Huls M, Brown CD, Windass AS, et al. The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane. Kidney Int. 2008;73:270.

    Google Scholar 

  168. Woodward OM, Kottgen A, Coresh J, et al. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci USA. 2009;106:10338.

    PubMed  CAS  Google Scholar 

  169. Wang B, Miao Z, Liu S, et al. Genetic analysis of ABCG2 gene C421A polymorphism with gout disease in Chinese Han male population. Hum Genet. 2010;127:245.

    PubMed  Google Scholar 

  170. Chong SS, Kristjannson K, Zoghbi HY, et al. Molecular cloning of the eDNA encoding a human renal sodium phosphate transport protein and its assignment to chromosome 6p21-p23. Genomics. 1993;18:255.

    Google Scholar 

  171. Uchino H, Tamai I, Yamashita K, et al. P-aminohippuric acid transport at renal apical membrane mediated by human inorganic phosphate transporter NPT1. Biochem Biophys Res Commun. 2000;270:254.

    PubMed  CAS  Google Scholar 

  172. Urano W, Taniguchi A, Anzai N, et al. Sodium-dependent phosphate cotransporter type 1 (NPT1) sequence polymorphisms in male patients with gout. Ann Rheum Dis. 2010;69:932.

    PubMed  Google Scholar 

  173. Dalbeth N, Merriman T. Crystal ball gazing: new therapeutic targets for hyperuricaemia and gout. Rheumatology. 2009;48:222–6.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Newcombe, D.S. (2013). The Prevalence and Risk Factors for Gout. In: Robinson, D. (eds) Gout. Springer, London. https://doi.org/10.1007/978-1-4471-4264-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4264-5_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4263-8

  • Online ISBN: 978-1-4471-4264-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics