Imaging of Gynecological Cancers

Chapter

Abstract

Imaging plays a crucial role in staging pelvic cancer. The assessment of disease presence, location and extent profoundly affects the decision for surgery, its timing in relation to neoadjuvant therapies and in planning the optimal surgical procedure. Radiological assessment of gynecological malignancies currently is not incorporated into the FIGO staging systems however non-invasive anatomical and functional imaging modalities are routinely utilized and essential in the diagnosis, detection, staging of disease and in shaping the patients treatment pathway. Advances in technology have led to more powerful equipment including high field strength MRI scanners, development of endocervical coils, hybrid PET/CT and multi-detector CT scanners. In parallel, new imaging techniques enabled by these hardware advances, in particular DCE-MRI, DW-MRI and PET/CT have furthered the capability to detect small sites of active disease. These techniques are being more widely used in the assessment of treatment response, distinguishing residual sites of disease from post-treatment changes and in identifying early recurrence. As imaging techniques continue to evolve they will enable us to interrogate tumor biology and the effects of sophisticated treatment modalities.

Keywords

Endometrial Ovarian Cervical Peritoneal Positron emission tomography Magnetic resonance imaging Computerized tomography Gynecological Imaging Pelvic 

References

  1. 1.
    Bharwani N, Reznek RH, Rockall AG. Ovarian cancer management: the role of imaging and diagnostic challenges. Eur J Radiol. 2011;78(1):41–51.CrossRefPubMedGoogle Scholar
  2. 2.
    Fleischer AC, Milam MR, Crispens MA, Shappell HW. Sonographic depiction of intratumoral vascularity with 2- and 3-dimensional color Doppler techniques. J Ultrasound Med. 2005;24(4):533–7.PubMedGoogle Scholar
  3. 3.
    Fleischer AC, Lyshchik A, Hirari M, Moore RD, Abramson RG, Fishman DA. Early detection of ovarian cancer with conventional and contrast-enhanced transvaginal sonography: recent advances and potential improvements. J Oncol. 2012;2012:302858.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Satoh Y, Ichikawa T, Motosugi U, Kimura K, Sou H, Sano K, Araki T. Diagnosis of peritoneal dissemination: comparison of 18F-FDG PET/CT, diffusion-weighted MRI, and contrast-enhanced MDCT. AJR Am J Roentgenol. 2011;196(2):447–53 [Comparative Study].CrossRefPubMedGoogle Scholar
  5. 5.
    Otero HJ, Yap JT, Patak MA, Erturk SM, Israel DA, Johnston CJ, Sakellis C, Rybicki FJ, Van den Abbeele AD, Ros PR. Evaluation of low-density neutral oral contrast material in PET/CT for tumor imaging: results of a randomized clinical trial. AJR Am J Roentgenol. 2009;193(2):326–32 [Randomized Controlled TrialResearch Support, Non-U.S. Gov’t].CrossRefPubMedGoogle Scholar
  6. 6.
    Sala E, Rockall A, Rangarajan D, Kubik-Huch RA. The role of dynamic contrast-enhanced and diffusion weighted magnetic resonance imaging in the female pelvis. Eur J Radiol. 2010;76(3):367–85.CrossRefPubMedGoogle Scholar
  7. 7.
    Bernardin L, Dilks P, Liyanage S, Miquel ME, Sahdev A, Rockall A. Effectiveness of semi-quantitative multiphase dynamic contrast-enhanced MRI as a predictor of malignancy in complex adnexal masses: radiological and pathological correlation. Eur Radiol. 2012;22(4):880–90.CrossRefPubMedGoogle Scholar
  8. 8.
    Punwani S. Diffusion weighted imaging of female pelvic cancers: concepts and clinical applications. Eur J Radiol. 2011;78(1):21–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Punwani S. Contrast enhanced MR imaging of female pelvic cancers: established methods and emerging applications. Eur J Radiol. 2011;78(1):2–11.CrossRefPubMedGoogle Scholar
  10. 10.
    Lai G, Rockall AG. Lymph node imaging in gynecologic malignancy. Semin Ultrasound CT MR. 2010;31(5):363–76.CrossRefPubMedGoogle Scholar
  11. 11.
    Lewis JS, Laforest R, Dehdashti F, Grigsby PW, Welch MJ, Siegel BA. An imaging comparison of 64Cu-ATSM and 60Cu-ATSM in cancer of the uterine cervix. J Nucl Med. 2008;49(7):1177–82.CrossRefPubMedGoogle Scholar
  12. 12.
    Torizuka T, Kanno T, Futatsubashi M, Okada H, Yoshikawa E, Nakamura F, Takekuma M, Maeda M, Ouchi Y. Imaging of gynecologic tumors: comparison of (11)C-choline PET with (18)F-FDG PET. J Nucl Med. 2003;44(7):1051–6.PubMedGoogle Scholar
  13. 13.
    Ozsarlak O, Tjalma W, Schepens E, Corthouts B, Op de Beeck B, Van Marck E, Parizel PM, De Schepper AM. The correlation of preoperative CT, MR imaging, and clinical staging (FIGO) with histopathology findings in primary cervical carcinoma. Eur Radiol. 2003;13(10):2338–45.CrossRefPubMedGoogle Scholar
  14. 14.
    Sala E, Wakely S, Senior E, Lomas D. MRI of malignant neoplasms of the uterine corpus and cervix. AJR Am J Roentgenol. 2007;188(6):1577–87 [Review].CrossRefPubMedGoogle Scholar
  15. 15.
    Soutter WP, Hanoch J, D’Arcy T, Dina R, McIndoe GA, DeSouza NM. Pretreatment tumour volume measurement on high-resolution magnetic resonance imaging as a predictor of survival in cervical cancer. BJOG. 2004;111(7):741–7 [Evaluation Studies].CrossRefPubMedGoogle Scholar
  16. 16.
    Burghardt E, Baltzer J, Tulusan AH, Haas J. Results of surgical treatment of 1028 cervical cancers studied with volumetry. Cancer. 1992;70(3):648–55.CrossRefPubMedGoogle Scholar
  17. 17.
    Burghardt E, Hofmann HM, Ebner F, Haas J, Tamussino K, Justich E. Magnetic resonance imaging in cervical cancer: a basis for objective classification. Gynecol Oncol. 1989;33(1):61–7 [Comparative Study].CrossRefPubMedGoogle Scholar
  18. 18.
    Dimopoulos JC, Petrow P, Tanderup K, Petric P, Berger D, Kirisits C, Pedersen EM, van Limbergen E, Haie-Meder C, Potter R. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (IV): basic principles and parameters for MR imaging within the frame of image based adaptive cervix cancer brachytherapy. Radiother Oncol. 2012;103(1):113–22 [Research Support, Non-U.S. Gov’t].CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Mayr NA, Huang Z, Wang JZ, Lo SS, Fan JM, Grecula JC, Sammet S, Sammet CL, Jia G, Zhang J, Knopp MV, Yuh WT. Characterizing tumor heterogeneity with functional imaging and quantifying high-risk tumor volume for early prediction of treatment outcome: cervical cancer as a model. Int J Radiat Oncol Biol Phys. 2012;83(3):972–9 [Research Support, N.I.H., Extramural].CrossRefPubMedGoogle Scholar
  20. 20.
    Gilderdale DJ, de Souza NM, Coutts GA, Chui MK, Larkman DJ, Williams AD, Young IR. Design and use of internal receiver coils for magnetic resonance imaging. Br J Radiol. 1999;72(864):1141–51 [Research Support, Non-U.S. Gov’tReview].CrossRefPubMedGoogle Scholar
  21. 21.
    de Souza NM, Dina R, McIndoe GA, Soutter WP. Cervical cancer: value of an endovaginal coil magnetic resonance imaging technique in detecting small volume disease and assessing parametrial extension. Gynecol Oncol. 2006;102(1):80–5.CrossRefGoogle Scholar
  22. 22.
    de Souza NM, Whittle M, Williams AD, Sohail M, Krausz T, Gilderdale DJ, McIndoe GA, Soutter WP. Magnetic resonance imaging of the primary site in stage I cervical carcinoma: a comparison of endovaginal coil with external phased array coil techniques at 0.5T. J Magn Reson Imaging. 2000;12(6):1020–6 [Comparative Study].CrossRefGoogle Scholar
  23. 23.
    Charles-Edwards E, Morgan V, Attygalle AD, Giles SL, Ind TE, Davis M, Shepherd J, McWhinney N, de Souza NM. Endovaginal magnetic resonance imaging of stage 1A/1B cervical cancer with A T2- and diffusion-weighted magnetic resonance technique: effect of lesion size and previous cone biopsy on tumor detectability. Gynecol Oncol. 2011;120(3):368–73.CrossRefPubMedGoogle Scholar
  24. 24.
    Charles-Edwards EM, Messiou C, Morgan VA, De Silva SS, McWhinney NA, Katesmark M, Attygalle AD, De Souza NM. Diffusion-weighted imaging in cervical cancer with an endovaginal technique: potential value for improving tumor detection in stage Ia and Ib1 disease. Radiology. 2008;249(2):541–50 [Research Support, Non-U.S. Gov’t].CrossRefPubMedGoogle Scholar
  25. 25.
    Kim SH, Choi BI, Han JK, Kim HD, Lee HP, Kang SB, Lee JY, Han MC. Preoperative staging of uterine cervical carcinoma: comparison of CT and MRI in 99 patients. J Comput Assist Tomogr. 1993;17(4):633–40.CrossRefPubMedGoogle Scholar
  26. 26.
    de Souza NM, McIndoe GA, Soutter WP, Krausz T, Chui KM, Hughes C, Mason WP. Value of magnetic resonance imaging with an endovaginal receiver coil in the pre-operative assessment of Stage I and IIa cervical neoplasia. Br J Obstet Gynaecol. 1998;105(5):500–7.CrossRefGoogle Scholar
  27. 27.
    Lam WW, So NM, Yang WT, Metreweli C. Detection of parametrial invasion in cervical carcinoma: role of short tau inversion recovery sequence. Clin Radiol. 2000;55(9):702–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Sironi S, Bellomi M, Villa G, Rossi S, Del Maschio A. Clinical stage I carcinoma of the uterine cervix value of preoperative magnetic resonance imaging in assessing parametrial invasion. Tumori. 2002;88(4):291–5.PubMedGoogle Scholar
  29. 29.
    Joja I, Asakawa M, Asakawa T, Nakagawa T, Kanazawa S, Kuroda M, Togami I, Hiraki Y, Akamatsu N, Kudo T. Endometrial carcinoma: dynamic MRI with turbo-FLASH technique. J Comput Assist Tomogr. 1996;20(6):878–87 [Comparative Study].CrossRefPubMedGoogle Scholar
  30. 30.
    Nasi F, Fiocchi F, Pecchi A, Rivasi F, Torricelli P. MRI evaluation of myometrial invasion by endometrial carcinoma. Comparison between fast-spin-echo T2w and coronal-FMPSPGR Gadolinium-Dota-enhanced sequences. Radiol Med. 2005;110(3):199–210 [Comparative Study Evaluation Studies].PubMedGoogle Scholar
  31. 31.
    Frei KA, Kinkel K, Bonel HM, Lu Y, Zaloudek C, Hricak H. Prediction of deep myometrial invasion in patients with endometrial cancer: clinical utility of contrast-enhanced MR imaging-a meta-analysis and Bayesian analysis. Radiology. 2000;216(2):444–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Beddy P, Moyle P, Kataoka M, Yamamoto AK, Joubert I, Lomas D, Crawford R, Sala E. Evaluation of depth of myometrial invasion and overall staging in endometrial cancer: comparison of diffusion-weighted and dynamic contrast-enhanced MR imaging. Radiology. 2012;262(2):530–7 [Comparative Study].CrossRefPubMedGoogle Scholar
  33. 33.
    Takeuchi M, Matsuzaki K, Nishitani H. Diffusion-weighted magnetic resonance imaging of endometrial cancer: differentiation from benign endometrial lesions and preoperative assessment of myometrial invasion. Acta Radiol. 2009;50(8):947–53.CrossRefPubMedGoogle Scholar
  34. 34.
    Tamai K, Koyama T, Saga T, Morisawa N, Fujimoto K, Mikami Y, Togashi K. The utility of diffusion-weighted MR imaging for differentiating uterine sarcomas from benign leiomyomas. Eur Radiol. 2008;18(4):723–30.CrossRefPubMedGoogle Scholar
  35. 35.
    McVeigh PZ, Syed AM, Milosevic M, Fyles A, Haider MA. Diffusion-weighted MRI in cervical cancer. Eur Radiol. 2008;18(5):1058–64.CrossRefPubMedGoogle Scholar
  36. 36.
    Ueda M, Otsuka M, Hatakenaka M, Sakai S, Ono M, Yoshimitsu K, Honda H, Torii Y. MR imaging findings of uterine endometrial stromal sarcoma: differentiation from endometrial carcinoma. Eur Radiol. 2001;11(1):28–33.CrossRefPubMedGoogle Scholar
  37. 37.
    De Priest PD, DeSimone CP. Ultrasound screening for the early detection of ovarian cancer. J Clin Oncol. 2003;21(10 Suppl):194s–9 [Review].CrossRefGoogle Scholar
  38. 38.
    Rosenthal AN, Fraser L, Manchanda R, Badman P, Philpott S, Mozersky J, Hadwin R, Cafferty FH, Benjamin E, Singh N, Evans DG, Eccles DM, Skates SJ, Mackay J, Menon U, Jacobs IJ. Results of annual screening in phase I of the United kingdom familial ovarian cancer screening study highlight the need for strict adherence to screening schedule. J Clin Oncol. 2013;31(1):49–57.CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Saini A, Dina R, McIndoe GA, Soutter WP, Gishen P, de Souza NM. Characterization of adnexal masses with MRI. AJR Am J Roentgenol. 2005;184(3):1004–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Mohaghegh P, Rockall AG. Imaging strategy for early ovarian cancer: characterization of adnexal masses with conventional and advanced imaging techniques. Radiographics. 2012;32(6):1751–73.CrossRefPubMedGoogle Scholar
  41. 41.
    Sala E, De Souza N, Lee SI, Atri M, Hricak H. Ovarian cancer: the role of functional imaging as an end point in clinical trials. Int J Gynecol Cancer. 2010;20(6):971–8 [Review].CrossRefPubMedGoogle Scholar
  42. 42.
    Tamada T, Sone T, Tanimoto D, Higashi H, Miyoshi H, Egashira N, Yamamoto A, Imai S. MRI appearance of primary giant ovarian leiomyoma in a hysterectomised woman. Br J Radiol. 2006;79(946):e126–8 [Case Reports Review].CrossRefPubMedGoogle Scholar
  43. 43.
    Kyriazi S, Collins DJ, Morgan VA, Giles SL, de Souza NM. Diffusion-weighted imaging of peritoneal disease for noninvasive staging of advanced ovarian cancer. Radiographics. 2010;30(5):1269–85.CrossRefPubMedGoogle Scholar
  44. 44.
    Kyriazi S, Kaye SB, de Souza NM. Imaging ovarian cancer and peritoneal metastases—current and emerging techniques. Nat Rev Clin Oncol. 2010;7(7):381–93 [Review].CrossRefPubMedGoogle Scholar
  45. 45.
    Tsai CS, Lai CH, Wang CC, Chang JT, Chang TC, Tseng CJ, Hong JH. The prognostic factors for patients with early cervical cancer treated by radical hysterectomy and postoperative radiotherapy. Gynecol Oncol. 1999;75(3):328–33.CrossRefPubMedGoogle Scholar
  46. 46.
    Rockall AG, Sohaib SA, Harisinghani MG, Babar SA, Singh N, Jeyarajah AR, Oram DH, Jacobs IJ, Shepherd JH, Reznek RH. Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer. J Clin Oncol. 2005;23(12):2813–21.CrossRefPubMedGoogle Scholar
  47. 47.
    Yang WT, Lam WW, Yu MY, Cheung TH, Metreweli C. Comparison of dynamic helical CT and dynamic MR imaging in the evaluation of pelvic lymph nodes in cervical carcinoma. AJR Am J Roentgenol. 2000;175(3):759–66.CrossRefPubMedGoogle Scholar
  48. 48.
    Choi HJ, Roh JW, Seo SS, Lee S, Kim JY, Kim SK, Kang KW, Lee JS, Jeong JY, Park SY. Comparison of the accuracy of magnetic resonance imaging and positron emission tomography/computed tomography in the presurgical detection of lymph node metastases in patients with uterine cervical carcinoma: a prospective study. Cancer. 2006;106(4):914–22.CrossRefPubMedGoogle Scholar
  49. 49.
    Kim SK, Choi HJ, Park SY, Lee HY, Seo SS, Yoo CW, Jung DC, Kang S, Cho KS. Additional value of MR/PET fusion compared with PET/CT in the detection of lymph node metastases in cervical cancer patients. Eur J Cancer. 2009;45(12):2103–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Todo Y, Kato H, Kaneuchi M, Watari H, Takeda M, Sakuragi N. Survival effect of para-aortic lymphadenectomy in endometrial cancer (SEPAL study): a retrospective cohort analysis. Lancet. 2010;375(9721):1165–72.CrossRefPubMedGoogle Scholar
  51. 51.
    Chang MC, Chen JH, Liang JA, Yang KT, Cheng KY, Kao CH. 18F-FDG PET or PET/CT for detection of metastatic lymph nodes in patients with endometrial cancer: a systematic review and meta-analysis. Eur J Radiol. 2012;81(11):3511–7 [Research Support, Non-U.S. Gov’t].CrossRefPubMedGoogle Scholar
  52. 52.
    Yoshida Y, Kurokawa T, Kawahara K, Tsuchida T, Okazawa H, Fujibayashi Y, Yonekura Y, Kotsuji F. Incremental benefits of FDG positron emission tomography over CT alone for the preoperative staging of ovarian cancer. AJR Am J Roentgenol. 2004;182(1):227–33.CrossRefPubMedGoogle Scholar
  53. 53.
    Patel S, Liyanage SH, Sahdev A, Rockall AG, Reznek RH. Imaging of endometrial and cervical cancer. Insights Imaging. 2010;1(5–6):309–28.CrossRefPubMedCentralPubMedGoogle Scholar
  54. 54.
    Sohaib SA, Reznek RH. MR imaging in ovarian cancer. Cancer Imaging. 2007;7(Spec No A):S119–29.CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Tofts PS, Collins DJ. Multicentre imaging measurements for oncology and in the brain. Br J Radiol. 2011;84(Spec No 2):S213–26 [Research Support, Non-U.S. Gov’t Review].CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Kyriazi S, Collins DJ, Messiou C, Pennert K, Davidson RL, Giles SL, Kaye SB, Desouza NM. Metastatic ovarian and primary peritoneal cancer: assessing chemotherapy response with diffusion-weighted MR imaging—value of histogram analysis of apparent diffusion coefficients. Radiology. 2011;261(1):182–92.CrossRefPubMedGoogle Scholar
  57. 57.
    Mayr NA, Yuh WT, Jajoura D, Wang JZ, Lo SS, Montebello JF, Porter K, Zhang D, McMeekin DS, Buatti JM. Ultra-early predictive assay for treatment failure using functional magnetic resonance imaging and clinical prognostic parameters in cervical cancer. Cancer. 2010;116(4):903–12 [Comparative Study Research Support, N.I.H., Extramural Validation Studies].CrossRefPubMedGoogle Scholar
  58. 58.
    Nakamura K, Joja I, Nagasaka T, Fukushima C, Kusumoto T, Seki N, Hongo A, Kodama J, Hiramatsu Y. The mean apparent diffusion coefficient value (ADCmean) on primary cervical cancer is a predictive marker for disease recurrence. Gynecol Oncol. 2012;127(3):478–83.CrossRefPubMedGoogle Scholar
  59. 59.
    Schwarz JK, Siegel BA, Dehdashti F, Grigsby PW. Metabolic response on post-therapy FDG-PET predicts patterns of failure after radiotherapy for cervical cancer. Int J Radiat Oncol Biol Phys. 2012;83(1):185–90.CrossRefPubMedGoogle Scholar
  60. 60.
    Kang S, Nam BH, Park JY, Seo SS, Ryu SY, Kim JW, Kim SC, Park SY, Nam JH. Risk assessment tool for distant recurrence after platinum-based concurrent chemoradiation in patients with locally advanced cervical cancer: a Korean gynecologic oncology group study. J Clin Oncol. 2012;30(19):2369–74.CrossRefPubMedGoogle Scholar
  61. 61.
    Carrara L, Gadducci A, Landoni F, Maggino T, Scambia G, Galletto L, Lissoni AA, Fuso L, Zola P, Sartori E. Could different follow-up modalities play a role in the diagnosis of asymptomatic endometrial cancer relapses?: an Italian multicentric retrospective analysis. Int J Gynecol Cancer. 2012;22(6):1013–9 [Comparative Study Multicenter Study].CrossRefPubMedGoogle Scholar
  62. 62.
    Sharma P, Kumar R, Singh H, Jeph S, Sharma DN, Bal C, Malhotra A. Carcinoma endometrium: role of 18-FDG PET/CT for detection of suspected recurrence. Clin Nucl Med. 2012;37(7):649–55.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.Department of ImagingBart’s Cancer Centre, St. Bartholomew’s HospitalLondonUK
  2. 2.CRUK/EPSRC Cancer Imaging CentreInstitute of Cancer Research, Royal Marsden Hospital, Downs RoadSuttonUK

Personalised recommendations