Skip to main content

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

Active magnetic bearings (AMBs) are non-contact bearings for rotating machines. A pair of electromagnets acting at opposite sides of the rotor balance the attractive magnetic forces in order to center the rotor in the control axis. Some fundamental concepts and terminologies that are needed for describing the operation and modeling of active magnetic bearings are introduced in this chapter. A simplified model of the AMB force is derived to study the interaction between the electromagnetic actuators and the rotor target. A linear variation of this model is commonly used in the design of rotor levitation controllers, and it is also presented in this chapter. Additionally, we discuss common AMB losses, such as flux leakage, eddy current, and hysteresis, which limit the maximum performance of the bearings. We conclude the chapter with a review of the different AMB levitation control methods that are found in the literature, including both classical and modern control methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn, H.J., Lee, S.W., Lee, S.H., Han, D.C.: Frequency domain control-relevant identification of mimo amb rigid rotor. Automatica 39, 299–307 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arredondo, I., Jugo, J.: Stability analysis and robust control design on an AMB system. In: Proceedings of the 46th IEEE Conference on Decision and Controls, pp. 2199–2204 (2007)

    Chapter  Google Scholar 

  3. Balas, G., Packard, A.: The structure singular value (μ) framework. In: The Control Handbook, pp. 671–687. CRC Press, Boca Raton (1996)

    Google Scholar 

  4. Brown, N.: High-speed compressor facility electromechanical design. Master’s thesis, University of Virginia (2005)

    Google Scholar 

  5. Chen, M., Knospe, C.R.: Feedback linearization of active magnetic bearings: current-mode implementation. IEEE/ASME Trans. Mechatron. 10, 632–639 (2005)

    Article  Google Scholar 

  6. Choi, H., Buckner, G., Gibson, N.: Neural robust control of a high-speed flexible rotor supported on active magnetic bearings. In: 2006 American Control Conference, pp. 3679–3684 (2006)

    Google Scholar 

  7. Demarest, K.R.: Engineering Electromagnetics. Prentice Hall, New York (1998)

    Google Scholar 

  8. Doyle, J., Packard, A., Zhou, K.: Review of LFTs, LMIs, and μ. In: Proceedings of the 30th IEEE Conference on Decision and Control, pp. 1227–1232 (1991)

    Chapter  Google Scholar 

  9. Fittro, R.L., Knospe, C.R., Stephens, L.S.: μ synthesis applied to the compliance minimization of an active magnetic bearing hsm spindle’s thrust axis. Mach. Sci. Technol. 7, 19–51 (2003)

    Article  Google Scholar 

  10. Fujita, M., Hatake, K., Matsumura, F.: Loop shaping based robust control of a magnetic bearing. IEEE Control Syst. Mag. 13, 57–65 (1993)

    Article  Google Scholar 

  11. Fujita, M., Namerikawa, T., Matsumura, F., Uchida, K.: μ-synthesis of an electromagnetic suspension system. IEEE Trans. Autom. Control 40, 530–536 (1995)

    Article  Google Scholar 

  12. Gibson, N.S., Buckner, G.D.: Real-time adaptive control of active magnetic bearings using linear parameter varying models. In: Proceedings IEEE SoutheastCon 2002, pp. 268–272 (2002)

    Google Scholar 

  13. Gibson, N.S., Buckner, G.D.: H ∞ control of active magnetic bearings using artificial neural network identification of uncertainty. In: Proceedings of the 2003 IEEE International Conference on Systems, Man and Cybernetics, pp. 1449–1456 (2003)

    Google Scholar 

  14. Gosiewski, Z., Mystkowski, A.: Robust control of active magnetic suspension: analytical and experimental results. Mech. Syst. Signal Process. 22, 1297–1303 (2008)

    Article  Google Scholar 

  15. Grega, W., Adam, P.: Comparison of linear control methods for an amb system. Int. J. Appl. Math. Comput. Sci. 15, 245–255 (2005)

    MATH  Google Scholar 

  16. Jastrzebski, R.P., Pollanen, R.: Compensation of nonlinearities in active magnetic bearings with variable force bias for zero and reduced-bias operation. Mechatronics 19, 629–638 (2009)

    Article  Google Scholar 

  17. Jastrzebski, R.P., Hynynena, K.M., Smirnov, A.: h ∞ control of active magnetic suspension. Mech. Syst. Signal Process. 24, 995–1006 (2010)

    Article  Google Scholar 

  18. Jayanth, V., Choi, H.J., Buckner, G.: Identification and control of a flexible rotor supported on active magnetic bearings. In: Proceedings IEEE SoutheastCon 2002, pp. 273–278 (2002)

    Google Scholar 

  19. Knospe, C.R., Tamer, S.M.: Experiments in robust control of rotor unbalance response using magnetic bearings. Mechatronics 7, 217–229 (1997)

    Article  Google Scholar 

  20. Knospe, C.R., Hope, R.W., Fedigan, S.J., Williams, R.D.: Experiments in the control of unbalance response using magnetic bearings. Mechatronics 5, 385–400 (1995)

    Article  Google Scholar 

  21. Lanzon, A., Tsiotras, P.: A combined application of h ∞ loop shaping and μ-synthesis to control high-speed flywheels. IEEE Trans. Control Syst. Technol. 13, 766–777 (2005)

    Article  Google Scholar 

  22. Li, G.: Robust stabilization of rotor-active magnetic bearing systems. PhD thesis, University of Virginia (2006)

    Google Scholar 

  23. Li, G., Allaire, P., Lin, Z., Huang, B.: Dynamic transfer of robust AMB controllers. In: Proceedings of the Eighth International Symposium on Magnetic Bearings, pp. 471–476 (2002)

    Google Scholar 

  24. Nonami, K., Ito, T.: μ synthesis of flexible rotor-magnetic bearing systems. IEEE Trans. Control Syst. Technol. 4, 503–512 (1996)

    Article  Google Scholar 

  25. Nonami, K., Liu, Z.H.: Adaptive unbalance vibration control of magnetic bearing system using frequency estimation for multiple periodic disturbances with noise. In: Proceedings of the 1999 IEEE International Conference on Control Applications, pp. 576–581 (1999)

    Google Scholar 

  26. Schweitzer, G., Maslen, E.H. (eds.): Magnetic Bearings. Springer, Berlin (2009)

    Google Scholar 

  27. Shi, J., Zmood, R., Qin, L.J.: The direct method for adaptive feed-forward vibration control of magnetic bearing systems. In: 7th International Conference on Control, Automation, Robotics and Vision, pp. 675–680 (2002)

    Google Scholar 

  28. Sivrioglu, S., Nonami, K., Saigo, M.: Low power consumption nonlinear control with h ∞ compensator for a zero-bias flywheel amb system. J. Vib. Control 10, 1151–1166 (2004)

    Article  MATH  Google Scholar 

  29. Skitek, G.G., Marshall, S.V.: Electromagnetic Concepts and Applications. Prentice Hall, New York (1982)

    Google Scholar 

  30. Smirnov, A., Jastrzebski, R.P.: Differential evolution approach for tuning an H ∞ controller in AMB systems. In: 35th Annual Conference of IEEE Industrial Electronics (IECON 2009), pp. 1514–1518 (2009)

    Chapter  Google Scholar 

  31. Zhuravlyov, Y.N.: On lq-control of magnetic bearing. IEEE Trans. Control Syst. Technol. 8, 344–350 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Yoon, S.Y., Lin, Z., Allaire, P.E. (2013). Fundamentals of Magnetic Bearings. In: Control of Surge in Centrifugal Compressors by Active Magnetic Bearings. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-4240-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4240-9_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4239-3

  • Online ISBN: 978-1-4471-4240-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics