A Historical Survey

  • Dmitry AltshullerEmail author
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 432)


In this chapter we give an informal discussion of the history of the problem of absolute stability from the early formulation by Lurye to the recent development of the method of the integral-quadratic constraints. The important milestones were the resolving equations of Lurye, the Popov criterion, and the Kalman-Yakubovich Lemma. The discussion of the Popov criterion includes its recent application to the Aizerman problem for retarded systems. We also discuss the most important developments of the 1960s and 1970s, especially the so-called stability (or Zames-Falb) multipliers. The chapter concludes with a discussion of some historical applications of the absolute stability analysis.


Absolute Stability Quadratic Constraint Historical Survey Lyapunov Function Candidate Linear Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Parker AerospaceRiversideUSA

Personalised recommendations