Skip to main content

Inhibition of the Sympathetic Nervous System

  • Chapter
  • First Online:
  • 5188 Accesses

Abstract

Activation of the sympathetic nervous system (SNS) is a fundamental component of the pathophysiology of heart failure, especially heart failure with reduced ejection fraction (HFREF). Prolonged SNS activation contributes to several of the clinical sequelae of HFREF, such as loss of contractile reserve, ventricular remodeling, and sudden cardiac death. Over the last 30 years, extensive clinical research has shown that inhibition of the SNS in patients with heart failure improves outcomes including mortality, hospitalization for heart failure, progression of symptoms, and sudden cardiac death. The cornerstone therapy for inhibiting the SNS is administration of drugs that act as antagonists of the β-adrenergic receptor (β-blockers). A robust body of evidence shows that β-blockers reduce symptoms and improve outcomes in all patients with HFREF. Non-pharmacologic therapies that also have been found to improve outcomes in patients with heart failure, such as cardiac resynchronization therapy (CRT) and exercise training, mediate their beneficial effects via inhibition of the SNS. Here, we review the literature that supports the use of these pharmacologic and non-pharmacologic therapies and offer practical advice regarding their application in clinical care.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cannon WB. Bodily changes in pain, hunger, fear and rage. New York/Littleton: D. Appleton and Co.; 1929.

    Google Scholar 

  2. Malpas SC. Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiol Rev. 2010;90(2):513–57.

    Article  CAS  PubMed  Google Scholar 

  3. Jänig W. The integrative action of the autonomic nervous system: neurobiology of homeostasis. Cambridge: Cambridge University Press; 2006.

    Book  Google Scholar 

  4. Janes RD, Brandys JC, Hopkins DA, Johnstone DE, Murphy DA, Armour JA. Anatomy of human extrinsic cardiac nerves and ganglia. Am J Cardiol. 1986;57(4):299–309.

    Article  CAS  PubMed  Google Scholar 

  5. Randall WC, Szentivanyi M, Pace JB, Wechsler JS, Kaye MP. Patterns of sympathetic nerve projections onto the canine heart. Circ Res. 1968;22(3):315–23.

    Article  CAS  PubMed  Google Scholar 

  6. Fuller MD, Emrick MA, Sadilek M, Scheuer T, Catterall WA. Molecular mechanism of calcium channel regulation in the fight-or-flight response. Sci Signal. 2010;3(141):ra70. doi:10.1126/scisignal.2001152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Shan J, Kushnir A, Betzenhauser MJ, Reiken S, Li J, Lehnart SE, et al. Phosphorylation of the ryanodine receptor mediates the cardiac fight or flight response in mice. J Clin Invest. 2010;120(12):4388–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Katz AM, Konstam MA. Heart failure: pathophysiology, molecular biology, and clinical management. 2 ed. Philadelphia: Lippincott Williams & Wilkins; 2012.

    Google Scholar 

  9. Ginsburg R, Bristow MR, Billingham ME, Stinson EB, Schroeder JS, Harrison DC. Study of the normal and failing isolated human heart: decreased response of failing heart to isoproterenol. Am Heart J. 1983;106(3):535–40.

    Article  CAS  PubMed  Google Scholar 

  10. Floras JS. Sympathetic nervous system activation in human heart failure. J Am Coll Cardiol. American College of Cardiology Foundation. 2009;54(5):375–85.

    Google Scholar 

  11. Swedberg K, Viquerat C, Rouleau JL, Roizen M, Atherton B, Parmley WW, et al. Comparison of myocardial catecholamine balance in chronic congestive heart failure and in angina pectoris without failure. Am J Cardiol. 1984;54(7):783–6.

    Article  CAS  PubMed  Google Scholar 

  12. Bristow MR, Ginsburg R, Minobe W, Cubicciotti RS, Sageman WS, Lurie K, et al. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med. 1982;307(4):205–11.

    Article  CAS  PubMed  Google Scholar 

  13. Fowler MB, Laser JA, Hopkins GL, Minobe W, Bristow MR. Assessment of the beta-adrenergic receptor pathway in the intact failing human heart: progressive receptor down-regulation and subsensitivity to agonist response. Circulation. 1986;74(6):1290–302.

    Article  CAS  PubMed  Google Scholar 

  14. Communal C, Singh K, Pimentel DR, Colucci WS. Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation. 1998;98(13):1329–34.

    Article  CAS  PubMed  Google Scholar 

  15. Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, et al. Apoptosis in myocytes in end-stage heart failure. N Engl J Med. 1996;335(16):1182–9.

    Article  CAS  PubMed  Google Scholar 

  16. Cao JM, Fishbein MC, Han JB, Lai WW, Lai AC, TJ W, et al. Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation. 2000;101(16):1960–9.

    Article  CAS  PubMed  Google Scholar 

  17. Black JW, Crowther AF, Shanks RG, Smith LH, Dornhorst AC. A new adrenergic betareceptor antagonist. Lancet. 1964;1(7342):1080–1.

    Article  CAS  PubMed  Google Scholar 

  18. Stapleton MP. Sir James Black and propranolol. The role of the basic sciences in the history of cardiovascular pharmacology. Tex Heart Inst J. 1997;24(4):336–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Frishman WH, Alwarshetty M. Beta-adrenergic blockers in systemic hypertension: pharmacokinetic considerations related to the current guidelines. Clin Pharmacokinet. 2002;41(7):505–16.

    Article  CAS  PubMed  Google Scholar 

  20. Bristow MR. Treatment of chronic heart failure with beta-adrenergic receptor antagonists: a convergence of receptor pharmacology and clinical cardiology. Circ Res. 2011;109(10):1176–94.

    Article  CAS  PubMed  Google Scholar 

  21. Brunton L, Chabner B, Knollman B. Goodman and Gilman's the pharmacological basis of therapeutics. 12 ed. Columbus: McGraw-Hill Education; 2010.

    Google Scholar 

  22. Kindermann M. Carvedilol but not metoprolol reduces beta-adrenergic responsiveness after complete elimination from plasma in vivo. Circulation. 2004;109(25):3182–90.

    Article  CAS  PubMed  Google Scholar 

  23. Snow PJ. Effect of propranolol in myocardial infarction. Lancet. 1965;2(7412):551–3.

    Article  CAS  PubMed  Google Scholar 

  24. Burch GE, Walsh JJ, Ferrans VJ, Hibbs R. Prolonged bed rest in the treatment of the dilated heart. Circulation. 1965;32(5):852–6.

    Article  CAS  PubMed  Google Scholar 

  25. Chidsey CA, Braunwald E, Morrow AG, Mason DT. Myocardial norepinephrine concentration in man. Effects of reserpine and of congestive heart failure. N Engl J Med. 1963;269:653–8.

    Article  CAS  PubMed  Google Scholar 

  26. Gaffney TE, Braunwald E. Importance of the adrenergic nervous system in the support of circulatory function in patients with congestive heart failure. Am J Med. 1963;34:320–4.

    Article  CAS  PubMed  Google Scholar 

  27. Waagstein F, Hjalmarson A, Varnauskas E, Wallentin I. Effect of chronic beta-adrenergic receptor blockade in congestive cardiomyopathy. Br Heart J. 1975;37(10):1022–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gobel FL, Norstrom LA, Nelson RR, Jorgensen CR, Wang Y. The rate-pressure product as an index of myocardial oxygen consumption during exercise in patients with angina pectoris. Circulation. 1978;57(3):549–56.

    Article  CAS  PubMed  Google Scholar 

  29. Swedberg K, Hjalmarson A, Waagstein F, Wallentin I. Prolongation of survival in congestive cardiomyopathy by beta-receptor blockade. Lancet. 1979;1(8131):1374–6.

    Article  CAS  PubMed  Google Scholar 

  30. Goodwin JF. The frontiers of cardiomyopathy. Br Heart J. 1982;48(1):1–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ikram H, Fitzpatrick D. Double-blind trial of chronic oral beta blockade in congestive cardiomyopathy. Lancet. 1981;2(8245):490–3.

    Article  CAS  PubMed  Google Scholar 

  32. Currie PJ, Kelly MJ, McKenzie A, Harper RW, Lim YL, Federman J, et al. Oral beta-adrenergic blockade with metoprolol in chronic severe dilated cardiomyopathy. J Am Coll Cardiol. 1984;3(1):203–9.

    Article  CAS  PubMed  Google Scholar 

  33. Waagstein F, Bristow MR, Swedberg K, Camerini F, Fowler MB, Silver MA, et al. Beneficial effects of metoprolol in idiopathic dilated cardiomyopathy. Metoprolol in Dilated Cardiomyopathy (MDC) Trial Study Group. Lancet. 1993;342(8885):1441–6.

    Article  CAS  PubMed  Google Scholar 

  34. Investigators C, Committees A. randomized trial of beta-blockade in heart failure. The Cardiac Insufficiency Bisoprolol Study (CIBIS). Circulation. 1994;90(4):1765–73.

    Article  Google Scholar 

  35. Packer M, Coats AJ, Fowler MB, Katus HA, Krum H, Mohacsi P, et al. Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med. 2001;344(22):1651–8.

    Article  CAS  PubMed  Google Scholar 

  36. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet. 1999;353(9146):9–13.

    Google Scholar 

  37. Group M-HS. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet. 1999;353(9169):2001–7.

    Article  Google Scholar 

  38. Macdonald PS, Keogh AM, Aboyoun CL, Lund M, Amor R, DJ MC. Tolerability and efficacy of carvedilol in patients with New York Heart Association class IV heart failure. J Am Coll Cardiol. 1999;33(4):924–31.

    Article  CAS  PubMed  Google Scholar 

  39. Beta-Blocker Evaluation of Survival Trial Investigators. A trial of the beta-blocker bucindolol in patients with advanced chronic heart failure. N Engl J Med. 2001;344(22):1659–67.

    Google Scholar 

  40. Bristow MR, Murphy GA, Krause-Steinrauf H, Anderson JL, Carlquist JF, Thaneemit-Chen S, et al. An alpha-2c-adrenergic receptor polymorphism alters the norepinephrine-lowering effects and therapeutic response of the beta-blocker bucindolol in chronic heart failure. Circ Heart Fail. 2010;3(1):21–8.

    Article  CAS  PubMed  Google Scholar 

  41. Lanfear DE, Hrobowski TN, Peterson EL, Wells KE, Swadia TV, Spertus JA, et al. Association of beta-blocker exposure with outcomes in heart failure differs between African American and white patients. Circ Heart Fail. 2012;5(2):202–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Packer M, Antonopoulos GV, Berlin JA, Chittams J, Konstam MA, Udelson JE. Comparative effects of carvedilol and metoprolol on left ventricular ejection fraction in heart failure: Results of a meta-analysis. Am Heart J. 2001;141(6):899–907.

    Article  CAS  PubMed  Google Scholar 

  43. Poole-Wilson PA, Swedberg K, Cleland JGF, Di Lenarda A, Hanrath P, Komajda M, et al. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial. Lancet. 2003;362(9377):7–13.

    Article  CAS  PubMed  Google Scholar 

  44. Bristow MR, Feldman AM, Adams Jr KF, Goldstein S. Selective versus nonselective beta-blockade for heart failure therapy: are there lessons to be learned from the COMET trial? J Card Fail. 2003;9(6):444–53.

    Article  CAS  PubMed  Google Scholar 

  45. Ruwald MH, Ruwald ACH, Jons C, Alexis J, McNitt S, Zareba W, et al. Effect of metoprolol versus carvedilol on outcomes in MADIT-CRT (Multicenter Automatic Defibrillator Implantation Trial with Cardiac Resynchronization Therapy). J Am Coll Cardiol. 2013;61(14):1518–26.

    Article  CAS  PubMed  Google Scholar 

  46. Heart Failure Society of America, Lindenfeld J, NM A, JP B, SP C, JA E, et al. HFSA 2010 comprehensive heart failure practice guideline. J Card Fail. 2010;16(6):e1–194. doi:10.1016/j.cardfail.2010.04.004.

    Article  Google Scholar 

  47. Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, et al. Focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults. J Am Coll Cardiol. 2009;53(15):e1–e90. doi:10.1016/j.jacc.2008.11.013.

    Article  PubMed  Google Scholar 

  48. Sliwa K, Norton GR, Kone N, Candy G, Kachope J, Woodiwiss AJ, et al. Impact of initiating carvedilol before angiotensin-converting enzyme inhibitor therapy on cardiac function in newly diagnosed heart failure. J Am Coll Cardiol. 2004;44(9):1825–30.

    Article  CAS  PubMed  Google Scholar 

  49. Willenheimer R, van Veldhuisen DJ, Silke B, Erdmann E, Follath F, Krum H, et al. Effect on survival and hospitalization of initiating treatment for chronic heart failure with bisoprolol followed by enalapril, as compared with the opposite sequence: results of the Randomized Cardiac Insufficiency Bisoprolol Study (CIBIS) III. Circulation. 2005;112(16):2426–35.

    Article  CAS  PubMed  Google Scholar 

  50. Funck-Brentano C, van Veldhuisen DJ, van de Ven LLM, Follath F, Goulder M, Willenheimer R, et al. Influence of order and type of drug (bisoprolol vs. enalapril) on outcome and adverse events in patients with chronic heart failure: a post hoc analysis of the CIBIS-III trial. Eur J Heart Fail. 2011;13(7):765–72.

    Article  CAS  PubMed  Google Scholar 

  51. Kramer DG, Trikalinos TA, Kent DM, Antonopoulos GV, Konstam MA, Udelson JE. Quantitative evaluation of drug or device effects on ventricular remodeling as predictors of therapeutic effects on mortality in patients with heart failure and reduced ejection fraction. J Am Coll Cardiol. 2010;56(5):392–406.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Abdulla J, Kober L, Christensen E, Torppedersen C. Effect of beta-blocker therapy on functional status in patients with heart failure — A meta-analysis. Eur J Heart Fail. 2006;8(5):522–31.

    Article  CAS  PubMed  Google Scholar 

  53. Dobre D, van Jaarsveld CHM, deJongste MJL, Haaijer Ruskamp FM, Ranchor AV. The effect of beta-blocker therapy on quality of life in heart failure patients: a systematic review and meta-analysis. Pharmacoepidemiol Drug Saf. 2007;16(2):152–9.

    Article  CAS  PubMed  Google Scholar 

  54. Mancini DM, Eisen H, Kussmaul W, Mull R, Edmunds LH, Wilson JR. Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation. 1991;83(3):778–86.

    Article  CAS  PubMed  Google Scholar 

  55. O'Neill JO. Peak oxygen consumption as a predictor of death in patients with heart failure receiving beta-blockers. Circulation. 2005;111(18):2313–8.

    Article  PubMed  CAS  Google Scholar 

  56. Peterson LR, Schechtman KB, Ewald GA, Geltman EM, de las Fuentes L, Meyer T, et al. Timing of cardiac transplantation in patients with heart failure receiving beta-adrenergic blockers. J Heart Lung Transplant. 2003;22(10):1141–8.

    Article  PubMed  Google Scholar 

  57. Maisel A, Mueller C, Adamsjr K, Anker S, Aspromonte N, Cleland J, et al. State of the art: using natriuretic peptide levels in clinical practice. Eur J Heart Fail. 2008;10(9):824–39.

    Article  CAS  PubMed  Google Scholar 

  58. Stanek B, Frey B, Hülsmann M, Berger R, Sturm B, Strametz-Juranek J, et al. Prognostic evaluation of neurohumoral plasma levels before and during beta-blocker therapy in advanced left ventricular dysfunction. J Am Coll Cardiol. 2001;38(2):436–42.

    Article  CAS  PubMed  Google Scholar 

  59. Hartmann F, Packer M, Coats AJ, Fowler MB, Krum H, Mohacsi P, et al. NT-proBNP in severe chronic heart failure: rationale, design and preliminary results of the COPERNICUS NT-proBNP substudy. Eur J Heart Fail. 2004;6(3):343–50.

    Article  CAS  PubMed  Google Scholar 

  60. Hartmann F, Packer M, Coats AJ, Fowler MB, Krum H, Mohacsi P, Rouleau JL, Tendera M, Castaigne A, Anker SD, Amann-Zalan I, Hoersch S, Katus HA. Prognostic impact of plasma N-terminal pro-brain natriuretic peptide in severe chronic congestive heart failure: a substudy of the Carvedilol Prospective Randomized Cumulative Survival (COPERNICUS) Trial. Circulation. 2004;110(13):1780–6.

    Article  CAS  PubMed  Google Scholar 

  61. Advisory council to improve outcomes nationwide in heart failure. Consensus recommendations for the management of chronic heart failure. Am J Cardiol. 1999;83(2A):1A–38A.

    Google Scholar 

  62. Haber HL, Simek CL, Gimple LW, Bergin JD, Subbiah K, Jayaweera AR, et al. Why do patients with congestive heart failure tolerate the initiation of beta-blocker therapy? Circulation. 1993;88(4):1610–9.

    Article  CAS  PubMed  Google Scholar 

  63. Epstein SE, Braunwald E. The effect of beta adrenergic blockade on patterns of urinary sodium excretion. Studies in normal subjects and in patients with heart disease. Ann Intern Med. 1966;65(1):20–7.

    Article  CAS  PubMed  Google Scholar 

  64. Davis ME, Richards AM, Nicholls MG, Yandle TG, Frampton CM, Troughton RW. Introduction of metoprolol increases plasma b-type cardiac natriuretic peptides in mild, stable heart failure. Circulation. 2006;113(7):977–85.

    Article  CAS  PubMed  Google Scholar 

  65. Driscoll A, Krum H, Wolfe R, Tonkin A, Study Group BENCH. Nurse-led titration of beta-adrenoreceptor blocking agents in chronic heart failure patients in the community. J Card Fail. 2011;17(3):224–30.

    Article  PubMed  Google Scholar 

  66. Gottlieb SS, Fisher ML, Kjekshus J, Deedwania P, Gullestad L, Vitovec, et al. Tolerability of beta-blocker initiation and titration in the Metoprolol CR/XL Randomized Intervention Trial in Congestive Heart Failure (MERIT-HF). Circulation. 2002;105(10):1182–8.

    Article  CAS  PubMed  Google Scholar 

  67. Krum H, Roecker EB, Mohacsi P, Rouleau JL, Tendera M, Coats AJS, et al. Effects of initiating carvedilol in patients with severe chronic heart failure: results from the COPERNICUS Study. JAMA. 2003;289(6):712–8.

    Article  CAS  PubMed  Google Scholar 

  68. Ko DT, Hebert PR, Coffey CS, Curtis JP, Foody JM, Sedrakyan A, et al. Adverse effects of beta-blocker therapy for patients with heart failure: a quantitative overview of randomized trials. Arch Intern Med. 2004;164(13):1389–94.

    Article  CAS  PubMed  Google Scholar 

  69. Proclemer A, Gradnik R, Savonitto S, Feruglio GA. Electrophysiological effects of bisoprolol. Eur Heart J. 1987;8(Suppl M):81–5.

    Article  PubMed  Google Scholar 

  70. Wilkoff BL, Kudenchuk PJ, Buxton AE, Sharma A, Cook JR, Bhandari AK, et al. The DAVID (Dual Chamber and VVI Implantable Defibrillator) II Trial. J Am Coll Cardiol. 2009;53(10):872–80.

    Article  PubMed  Google Scholar 

  71. Cheng RK, Horwich TB, Fonarow GC. Relation of systolic blood pressure to survival in both ischemic and nonischemic systolic heart failure. Am J Cardiol. 2008;102(12):1698–705.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Rouleau JL, Roecker EB, Tendera M, Mohacsi P, Krum H, Katus HA, et al. Influence of pretreatment systolic blood pressure on the effect of carvedilol in patients with severe chronic heart failure. J Am Coll Cardiol. 2004;43(8):1423–9.

    Article  CAS  PubMed  Google Scholar 

  73. Soläng L, Malmberg K, Rydén L. Diabetes mellitus and congestive heart failure. Further knowledge needed. Eur Heart J. 1999;20(11):789–95.

    Article  PubMed  Google Scholar 

  74. Haas SJ, Vos T, Gilbert RE, Krum H. Are beta-blockers as efficacious in patients with diabetes mellitus as in patients without diabetes mellitus who have chronic heart failure? A meta-analysis of large-scale clinical trials. Am Heart J. 2003;146(5):848–53.

    Article  CAS  PubMed  Google Scholar 

  75. Shorr RI, Ray WA, Daugherty JR, Griffin MR. Antihypertensives and the risk of serious hypoglycemia in older persons using insulin or sulfonylureas. JAMA. 1997;278(1):40–3.

    Article  CAS  PubMed  Google Scholar 

  76. Rodger JC, Sheldon CD, Lerski RA, Livingstone WR. Intermittent claudication complicating beta-blockade. Br Med J. 1976;1(6018):1125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Radack K, Deck C. Beta-adrenergic blocker therapy does not worsen intermittent claudication in subjects with peripheral arterial disease. A meta-analysis of randomized controlled trials. Arch Intern Med. 1991;151(9):1769–76.

    Article  CAS  PubMed  Google Scholar 

  78. Broadley KJ. Beta-adrenoceptor responses of the airways: for better or worse? Eur J Pharmacol. 2006;533(1–3):15–27.

    Article  CAS  PubMed  Google Scholar 

  79. McNeill RS. Effect of a beta-adrenergic-blocking agent, propranolol, on asthmatics. Lancet. 1964;2(7369):1101–2.

    Article  CAS  PubMed  Google Scholar 

  80. Salpeter SR, Ormiston TM, Salpeter EE. Cardioselective beta-blockers in patients with reactive airway disease: a meta-analysis. Ann Intern Med. 2002;137(9):715–25.

    Article  CAS  PubMed  Google Scholar 

  81. Kotlyar E, Keogh AM, Macdonald PS, Arnold RH, McCaffrey DJ, Glanville AR. Tolerability of carvedilol in patients with heart failure and concomitant chronic obstructive pulmonary disease or asthma. J Heart Lung Transplant. 2002;21(12):1290–5.

    Article  PubMed  Google Scholar 

  82. Rutten FH, Zuithoff NPA, Hak E, Grobbee DE, Hoes AW. Beta-blockers may reduce mortality and risk of exacerbations in patients with chronic obstructive pulmonary disease. Arch Intern Med. 2010;170(10):880–7.

    Article  PubMed  Google Scholar 

  83. Salpeter S, Ormiston T, Salpeter E. Cardioselective beta-blockers for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2005;(4):CD003566.

    Google Scholar 

  84. Jabbour A, Macdonald PS, Keogh AM, Kotlyar E, Mellemkjaer S, Coleman CF, et al. Differences between beta-blockers in patients with chronic heart failure and chronic obstructive pulmonary disease: a randomized crossover trial. J Am Coll Cardiol. 2010;55(17):1780–7.

    Article  PubMed  Google Scholar 

  85. Mentz RJ, Wojdyla D, Fiuzat M, Chiswell K, Fonarow GC, O'Connor CM. Association of beta-blocker use and selectivity with outcomes in patients with heart failure and chronic obstructive pulmonary disease (from OPTIMIZE-HF). Am J Cardiol. 2012;111(4):582–7.

    Article  PubMed  CAS  Google Scholar 

  86. Blecker S, Paul M, Taksler G, Ogedegbe G, Katz S. Heart failure associated hospitalizations in the United States. J Am Coll Cardiol. 2013;61(12):1259–67.

    Article  PubMed  Google Scholar 

  87. Weil JV, Chidsey CA. Plasma volume expansion resulting from interference with adrenergic function in normal man. Circulation. 1968;37(1):54–61.

    Article  CAS  PubMed  Google Scholar 

  88. Heart Failure Society of America (HFSA) Practice Guidelines. HFSA guidelines for management of patients with heart failure caused by left ventricular systolic dysfunction--pharmacological approaches. J Card Fail. 1999;5(4):357–82.

    Article  Google Scholar 

  89. Gattis WA, O'Connor CM, Gallup DS, Hasselblad V, Gheorghiade M. IMPACT-HF Investigators and Coordinators. Predischarge initiation of carvedilol in patients hospitalized for decompensated heart failure: results of the Initiation Management Predischarge: Process for Assessment of Carvedilol Therapy in Heart Failure (IMPACT-HF) trial. J Am Coll Cardiol. 2004;43(9):1534–41.

    Article  CAS  PubMed  Google Scholar 

  90. Fonarow GC, Abraham WT, Albert NM, Stough WG, Gheorghiade M, Greenberg BH, et al. Influence of beta-blocker continuation or withdrawal on outcomes in patients hospitalized with heart failure. J Am Coll Cardiol. 2008;52(3):190–9.

    Article  CAS  PubMed  Google Scholar 

  91. Fonarow G, Abraham W, Albert N, Stough W, Gheorghiade M, Greenberg B, O’Connor CM, et al. Prospective evaluation of beta-blocker use at the time of hospital discharge as a heart failure performance measure: results from OPTIMIZE-HF. J Card Fail. 2007;13(9):722–31.

    Article  CAS  PubMed  Google Scholar 

  92. Gorodeski EZ, Chu EC, Reese JR, Shishehbor MH, Hsich E, Starling RC. Prognosis on chronic dobutamine or milrinone infusions for stage d heart failure. Circ Heart Fail. 2009;2(4):320–4.

    Article  CAS  PubMed  Google Scholar 

  93. De Marco T, Chatterjee K. Phosphodiesterase inhibitors in refractory heart failure: bridge to beta-blockade? J Am Coll Cardiol. 1998;31(6):1341–3.

    Article  CAS  PubMed  Google Scholar 

  94. Metra M, Nodari S, D'Aloia A, Muneretto C, Robertson AD, Bristow MR, et al. Beta-blocker therapy influences the hemodynamic response to inotropic agents in patients with heart failure: a randomized comparison of dobutamine and enoximone before and after chronic treatment with metoprolol or carvedilol. J Am Coll Cardiol. 2002;40(7):1248–58.

    Article  CAS  PubMed  Google Scholar 

  95. Jennings DL, Thompson ML. Use of combination therapy with a beta-blocker and milrinone in patients with advanced heart failure. Ann Pharmacother. 2009;43(11):1872–6.

    Article  CAS  PubMed  Google Scholar 

  96. Shakar SF, Abraham WT, Gilbert EM, Robertson AD, Lowes BD, Zisman LS, et al. Combined oral positive inotropic and beta-blocker therapy for treatment of refractory class IV heart failure. J Am Coll Cardiol. 1998;31(6):1336–40.

    Article  CAS  PubMed  Google Scholar 

  97. Krum H, Ninio D, MacDonald P. Baseline predictors of tolerability to carvedilol in patients with chronic heart failure. Heart. 2000;84(6):615–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Parameswaran AC, Tang WHW, Francis GS, Gupta R, Young JB. Why do patients fail to receive beta-blockers for chronic heart failure over time? A “real-world” single-center, 2-year follow-up experience of beta-blocker therapy in patients with chronic heart failure. Am Heart J. 2005;149(5):921–6.

    Article  PubMed  Google Scholar 

  99. Bristow MR, Gilbert EM, Abraham WT, Adams KF, Fowler MB, Hershberger RE, et al. Carvedilol produces dose-related improvements in left ventricular function and survival in subjects with chronic heart failure. MOCHA Investigators. Circulation. 1996;94(11):2807–16.

    Article  CAS  PubMed  Google Scholar 

  100. Simon T. Bisoprolol dose–response relationship in patients with congestive heart failure: a subgroup analysis in the Cardiac Insufficiency Bisoprolol Study (CIBIS II). Eur Heart J. 2003;24(6):552–9.

    Article  CAS  PubMed  Google Scholar 

  101. Metra M, Torp-Pedersen C, Swedberg K, Cleland JG, Di Lenarda A, Komajda M. Influence of heart rate, blood pressure, and beta-blocker dose on outcome and the differences in outcome between carvedilol and metoprolol tartrate in patients with chronic heart failure: results from the COMET trial. Eur Heart J. 2005;26(21):2259–68.

    Article  CAS  PubMed  Google Scholar 

  102. Wikstrand J, Hjalmarson A, Waagstein F, Fagerberg B, Goldstein S, Kjekshus J, et al. Dose of metoprolol CR/XL and clinical outcomes in patients with heart failure: analysis of the experience in metoprolol CR/XL randomized intervention trial in chronic heart failure (MERIT-HF). J Am Coll Cardiol. 2002;40(3):491–8.

    Article  CAS  PubMed  Google Scholar 

  103. Fowler MB, Lottes SR, Nelson JJ, Lukas MA, Gilbert EM, Greenberg B, et al. Beta-blocker dosing in community-based treatment of heart failure. Am Heart J. 2007;153(6):1029–36.

    Article  CAS  PubMed  Google Scholar 

  104. Lechat P, Hulot JS, Escolano S, Mallet A, Leizorovicz A, Werhlen-Grandjean M, et al. Heart rate and cardiac rhythm relationships with bisoprolol benefit in chronic heart failure in CIBIS II Trial. Circulation. 2001;103(10):1428–33.

    Article  CAS  PubMed  Google Scholar 

  105. McAlister FA, Wiebe N, Ezekowitz JA, Leung AA, Armstrong PW. Meta-analysis: beta-blocker dose, heart rate reduction, and death in patients with heart failure. Ann Intern Med. 2009;150(11):784–94.

    Article  PubMed  Google Scholar 

  106. Borlaug BA, Paulus WJ. Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur Heart J. 2011;32(6):670–9.

    Article  PubMed  Google Scholar 

  107. Benedict CR, Weiner DH, Johnstone DE, Bourassa MG, Ghali JK, Nicklas J, et al. Comparative neurohormonal responses in patients with preserved and impaired left ventricular ejection fraction: results of the Studies of Left Ventricular Dysfunction (SOLVD) registry. J Am Coll Cardiol. 1993;22(Suppl A):146A–53A.

    Article  CAS  PubMed  Google Scholar 

  108. Carson P, Johnson G, Fletcher R, Cohn J. Mild systolic dysfunction in heart failure (left ventricular ejection fraction >35 %): baseline characteristics, prognosis and response to therapy in the Vasodilator in Heart Failure Trials (V-HeFT). J Am Coll Cardiol. 1996;27(3):642–9.

    Article  CAS  PubMed  Google Scholar 

  109. Flather MD, Shibata MC, Coats AJ, Van Veldhuisen DJ, Parkhomenko A, Borbola J, et al. Randomized trial to determine the effect of nebivolol on mortality and cardiovascular hospital admission in elderly patients with heart failure (SENIORS). Eur Heart J. 2004;26(3):215–25.

    Article  CAS  Google Scholar 

  110. van Veldhuisen DJ, Cohen-Solal A, Bohm M, Anker SD, Babalis D, Roughton M, et al. Beta-blockade with nebivolol in elderly heart failure patients with impaired and preserved left ventricular ejection fraction. J Am Coll Cardiol. 2009;53(23):2150–8.

    Article  PubMed  CAS  Google Scholar 

  111. El-Refai M, Peterson EL, Wells K, Swadia T, Sabbah HN, Spertus JA, et al. Comparison of beta-blocker effectiveness in heart failure patients with preserved ejection fraction versus those with reduced ejection fraction. J Card Fail. 2013;19(2):73–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hernandez AF, Hammill BG, O'Connor CM, Schulman KA, Curtis LH, Fonarow GC. Clinical effectiveness of beta-blockers in heart failure. J Am Coll Cardiol. 2009;53(2):184–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bohm M, La Rosée K, Schwinger RH, Erdmann E. Evidence for reduction of norepinephrine uptake sites in the failing human heart. J Am Coll Cardiol. 1995;25(1):146–53.

    Article  CAS  PubMed  Google Scholar 

  114. Haider N, Baliga RR, Chandrashekhar Y, Narula J. Adrenergic excess, hNET1 down-regulation, and compromised mIBG uptake in heart failure poverty in the presence of plenty. JACC Cardiovasc Imaging. 2010;3(1):71–5.

    Article  PubMed  Google Scholar 

  115. Carrió I, Cowie MR, Yamazaki J, Udelson J, Camici PG. Cardiac sympathetic imaging with mIBG in heart failure. JACC Cardiovasc Imaging. 2010;3(1):92–100.

    Article  PubMed  Google Scholar 

  116. Thackeray JT, Bengel FM. Assessment of cardiac autonomic neuronal function using PET imaging. J Nucl Cardiol. 2013;20(1):150–65.

    Article  PubMed  Google Scholar 

  117. Merlet P, Valette H, Dubois-Randé JL, Moyse D, Duboc D, Dove P, et al. Prognostic value of cardiac metaiodobenzylguanidine imaging in patients with heart failure. J Nucl Med. 1992;33(4):471–7.

    CAS  PubMed  Google Scholar 

  118. Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al. Myocardial Iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. J Am Coll Cardiol. 2010;55(20):2212–21.

    Article  PubMed  Google Scholar 

  119. Cohen-Solal A, Rouzet F, Berdeaux A, Le Guludec D, Abergel E, Syrota A, et al. Effects of carvedilol on myocardial sympathetic innervation in patients with chronic heart failure. J Nucl Med. 2005;46(11):1796–803.

    CAS  PubMed  Google Scholar 

  120. Kasama S, Toyama T, Hatori T, Sumino H, Kumakura H, Takayama Y, et al. Evaluation of cardiac sympathetic nerve activity and left ventricular remodelling in patients with dilated cardiomyopathy on the treatment containing carvedilol. Eur Heart J. 2007;28(8):989–95.

    Article  CAS  PubMed  Google Scholar 

  121. DiFrancesco D. The role of the funny current in pacemaker activity. Circ Res. 2010;106(3):434–46.

    Article  CAS  PubMed  Google Scholar 

  122. Frenneaux MP. Autonomic changes in patients with heart failure and in post-myocardial infarction patients. Heart. 2004;90(11):1248–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93(5):1043–65.

    Google Scholar 

  124. Casolo G, Balli E, Taddei T, Amuhasi J, Gori C. Decreased spontaneous heart rate variability in congestive heart failure. Am J Cardiol. 1989;64(18):1162–7.

    Article  CAS  PubMed  Google Scholar 

  125. Ponikowski P, Anker SD, Chua TP, Szelemej R, Piepoli M, Adamopoulos S, et al. Depressed heart rate variability as an independent predictor of death in chronic congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol. 1997;79(12):1645–50.

    Article  CAS  PubMed  Google Scholar 

  126. Bilchick KC, Fetics B, Djoukeng R, Fisher SG, Fletcher RD, Singh SN, et al. Prognostic value of heart rate variability in chronic congestive heart failure (Veterans affairs’ survival trial of antiarrhythmic therapy in congestive heart failure). Am J Cardiol. 2002;90(1):24–8.

    Article  PubMed  Google Scholar 

  127. Mortara A, La Rovere MT, Pinna GD, Maestri R, Capomolla S, Cobelli F. Nonselective beta-adrenergic blocking agent, carvedilol, improves arterial baroflex gain and heart rate variability in patients with stable chronic heart failure. J Am Coll Cardiol. 2000;36(5):1612–8.

    Article  CAS  PubMed  Google Scholar 

  128. Bullinga JR, Alharethi R, Schram MS, Bristow MR, Gilbert EM. Changes in heart rate variability are correlated to hemodynamic improvement with chronic carvedilol therapy in heart failure. J Card Fail. 2005;11(9):693–9.

    Article  CAS  PubMed  Google Scholar 

  129. Strauss HW, Johnson MN, Schöder H, Tamaki N. Metaiodobenzylguanidine imaging comes of age. A new arrow in the prognostic quiver for heart failure patients. J Am Coll Cardiol. 2010;55(20):2222–4.

    Article  PubMed  Google Scholar 

  130. Linde C, Ellenbogen K, McAlister FA. Cardiac resynchronization therapy (CRT): clinical trials, guidelines, and target populations. Heart Rhythm. 2012;9(Suppl):S3–S13.

    Article  PubMed  Google Scholar 

  131. Adamson PB, Kleckner KJ, VanHout WL, Srinivasan S, Abraham WT. Cardiac resynchronization therapy improves heart rate variability in patients with symptomatic heart failure. Circulation. 2003;108(3):266–9.

    Article  PubMed  Google Scholar 

  132. Cha YM, Chareonthaitawee P, Dong YX, Kemp BJ, JK O, Miyazaki C, et al. Cardiac sympathetic reserve and response to cardiac resynchronization therapy. Circ Heart Fail. 2011;4(3):339–44.

    Article  PubMed  Google Scholar 

  133. Fantoni C, Raffa S, Regoli F, Giraldi F, La Rovere MT, Prentice J, et al. Cardiac resynchronization therapy improves heart rate profile and heart rate variability of patients with moderate to severe heart failure. J Am Coll Cardiol. 2005;46(10):1875–82.

    Article  PubMed  Google Scholar 

  134. Sin DD, Fitzgerald F, Parker JD, Newton G, Floras JS, Bradley TD. Risk factors for central and obstructive sleep apnea in 450 men and women with congestive heart failure. Am J Respir Crit Care Med. 1999;160(4):1101–6.

    Article  CAS  PubMed  Google Scholar 

  135. Somers VK, Dyken ME, Mark AL, Abboud FM. Sympathetic-nerve activity during sleep in normal subjects. N Engl J Med. 1993;328(5):303–7.

    Article  CAS  PubMed  Google Scholar 

  136. Somers VK, Dyken ME, Clary MP, Abboud FM. Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest. 1995;96(4):1897–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Usui K, Bradley TD, Spaak J, Ryan CM, Kubo T, Kaneko Y, et al. Inhibition of awake sympathetic nerve activity of heart failure patients with obstructive sleep apnea by nocturnal continuous positive airway pressure. J Am Coll Cardiol. 2005;45(12):2008–11.

    Article  PubMed  Google Scholar 

  138. Kaneko Y, Floras JS, Usui K, Plante J, Tkacova R, Kubo T, et al. Cardiovascular effects of continuous positive airway pressure in patients with heart failure and obstructive sleep apnea. N Engl J Med. 2003;348(13):1233–41.

    Article  PubMed  Google Scholar 

  139. Kasai T, Narui K, Dohi T, Yanagisawa N, Ishiwata S, Ohno M, et al. Prognosis of patients with heart failure and obstructive sleep apnea treated with continuous positive airway pressure. Chest. 2008;133(3):690–6.

    Article  PubMed  Google Scholar 

  140. McKelvie RS, Teo KK, McCartney N, Humen D, Montague T, Yusuf S. Effects of exercise training in patients with congestive heart failure: a critical review. J Am Coll Cardiol. 1995;25(3):789–96.

    Article  CAS  PubMed  Google Scholar 

  141. O'Connor CM, Whellan DJ, Lee KL, Keteyian SJ, Cooper LS, Ellis SJ, et al. Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA. 2009;301(14):1439–50.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Gademan MGJ, Swenne CA, Verwey HF, van der Laarse A, Maan AC, van de Vooren H, et al. Effect of exercise training on autonomic derangement and neurohumoral activation in chronic heart failure. J Card Fail. 2007;13(4):294–303.

    Article  PubMed  Google Scholar 

  143. Roveda F, Middlekauff HR, Rondon MUPB, Reis SF, Souza M, Nastari L, et al. The effects of exercise training on sympathetic neural activation in advanced heart failure: a randomized controlled trial. J Am Coll Cardiol. 2003;42(5):854–60.

    Article  PubMed  Google Scholar 

  144. DiMicco JA, Samuels BC, Zaretskaia MV, Zaretsky DV. The dorsomedial hypothalamus and the response to stress: part renaissance, part revolution. Pharmacol Biochem Behav. 2002;71(3):469–80.

    Article  CAS  PubMed  Google Scholar 

  145. Akashi YJ, Goldstein DS, Barbaro G, Ueyama T. Takotsubo cardiomyopathy: a new form of acute, reversible heart failure. Circulation. 2008;118(25):2754–62.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Wittstein IS, Thiemann DR, Lima JAC, Baughman KL, Schulman SP, Gerstenblith G, et al. Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med. 2005;352(6):539–48.

    Article  CAS  PubMed  Google Scholar 

  147. Yeh GY, McCarthy EP, Wayne PM, Stevenson LW, Wood MJ, Forman D, et al. Tai chi exercise in patients with chronic heart failure: a randomized clinical trial. Arch Intern Med. 2011;171(8):750–7.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Yeh GY, Wood MJ, Lorell BH, Stevenson LW, Eisenberg DM, Wayne PM, et al. Effects of tai chi mind-body movement therapy on functional status and exercise capacity in patients with chronic heart failure: A randomized controlled trial. Am J Med. 2004;117(8):541–8.

    Article  PubMed  Google Scholar 

  149. Curiati JA, Bocchi E, Freire JO, Arantes AC, Braga M, Garcia Y, et al. Meditation reduces sympathetic activation and improves the quality of life in elderly patients with optimally treated heart failure: a prospective randomized study. J Altern Complement Med. 2005;11(3):465–72.

    Article  PubMed  Google Scholar 

  150. Olshansky B, Sabbah HN, Hauptman PJ, Colucci WS. Parasympathetic nervous system and heart failure: pathophysiology and potential implications for therapy. Circulation. 2008;118(8):863–71.

    Article  PubMed  Google Scholar 

  151. Zhang Y, Popovic ZB, Bibevski S, Fakhry I, Sica DA, Van Wagoner DR, et al. Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model. Circ Heart Fail. 2009;2(6):692–9.

    Article  CAS  PubMed  Google Scholar 

  152. De Ferrari GM, Crijns HJGM, Borggrefe M, Milasinovic G, Smid J, Zabel M, et al. Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J. 2011;32(7):847–55.

    Article  CAS  PubMed  Google Scholar 

  153. Hauptman PJ, Schwartz PJ, Gold MR, Borggrefe M, van Veldhuisen DJ, Starling RC, et al. Rationale and study design of the INcrease Of Vagal TonE in Heart Failure study: INOVATE-HF. Am Heart J. 2012;163(6):954–62.

    Article  PubMed  Google Scholar 

  154. Rundqvist B, Elam M, Bergmann-Sverrisdottir Y, Eisenhofer G, Friberg P. Increased cardiac adrenergic drive precedes generalized sympathetic activation in human heart failure. Circulation. 1997;95(1):169–75.

    Article  CAS  PubMed  Google Scholar 

  155. Chatterjee S, Biondi-Zoccai G, Abbate A, D'Ascenzo F, Castagno D, Van Tassell B, et al. Benefits of beta blockers in patients with heart failure and reduced ejection fraction: network meta-analysis. Br Med J. 2013;346:f55. doi:10.1136/bmj.f55.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Eric Steidley MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag London

About this chapter

Cite this chapter

Kransdorf, E.P., Steidley, D.E. (2017). Inhibition of the Sympathetic Nervous System. In: Eisen, H. (eds) Heart Failure. Springer, London. https://doi.org/10.1007/978-1-4471-4219-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4219-5_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4218-8

  • Online ISBN: 978-1-4471-4219-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics