Skip to main content

Molecular Changes in Heart Failure

  • Chapter
  • First Online:
Heart Failure

Abstract

Heart failure is an increasingly prevalent cause of significant worldwide morbidity, mortality, and economic burden. Molecular investigations are unraveling the gene expression changes, protein signaling networks, and intercellular interactions that are causes and consequences of cardiac hypertrophy and failure. In particular, reactivation of the “fetal gene program” that is silenced in the normal adult heart has come to define the pathologic hypertrophic cardiac response that leads to heart failure. Our evolving knowledge of the molecular and cellular changes in the failed myocardium—for example, alterations in calcium signaling—is leading to new therapeutic options. This chapter summarizes some of the current understanding of changes responsible for cardiac hypertrophy, cardiomyocyte death, and altered cardiac metabolism. It also discusses emerging biomarkers for profiling of heart failure severity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AKAP:

A-kinase anchoring protein

ANF :

Atrial natriuretic factor

AT:

Angiotensin

βMHC:

β-myosin heavy chain

BAD :

Bcl-2-antagonist of cell death

BNP :

Brain-type natriuretic peptide

cGMP:

Cyclic guanine monophosphate

CHF:

Congestive heart failure

CRP:

C-reactive protein

DAG:

Diacylglycerol

DISC:

Death-induced signaling complex

ECM:

Extracellular matrix

ERAD:

Endoplasmic reticulum-associated degradation

ERK:

Extracellular-signal-related kinase

FAK :

Focal adhesion kinase

Gab :

Grb2-associated binder

GSK3β :

Glycogen synthase kinase 3β

HSP :

Heat shock protein

ILK:

Integrin-linked kinase

IP3 :

Inositol triphosphate

LCAD:

Long-chain acyl-CoA dehydrogenase

LTCC:

L-type calcium channel

LVAD:

Left ventricular assist device

MAPK :

Mitogen-activated protein kinases

MCAD:

Medium-chain acyl-CoA dehydrogenase

miR:

Micro-RNA

MI:

Myocardial infarction

MLP:

Muscle LIM protein

MMP:

Matrix metalloproteinase

mTOR:

Molecular target of rapamycin

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NFAT :

Nuclear factor of activated T cells

NOS:

Nitric oxide synthase

NOX:

NADPH oxidase

PI3K :

Phosphoinositide-3-kinase

PKA:

Protein kinase A

PKC:

Protein kinase C

PPAR:

Peroxisome proliferator-activated receptor

RyR2:

Ryanodine receptor type 2

SAC:

Stretch-activated ion channel

SERCA :

Sarcoplasmic reticulum Ca2+ ATPase

SOC:

Store-operated Ca2+ channel

TAC:

Transaortic constriction

TGF-β:

Tissue growth factor beta

TIMP:

Tissue inhibitor of metalloproteinase

TNF-α:

Tumor necrosis factor alpha

TnI:

Troponin I

TnT:

Troponin T

TRP:

Transient receptor potential

References

  1. He J, Ogden LG, Bazzano LA, Vupputuri S, Loria C, Whelton PK. Risk factors for congestive heart failure in US men and women: NHANES I epidemiologic follow-up study. Arch Intern Med. 2001;161:996–1002.

    Article  CAS  PubMed  Google Scholar 

  2. Rich MW. Epidemiology, pathophysiology, and etiology of congestive heart failure in older adults. J Am Geriatr Soc. 1997;45:968–74.

    Article  CAS  PubMed  Google Scholar 

  3. Kannel WB, Ho K, Thom T. Changing epidemiological features of cardiac failure. Br Heart J. 1994;72:S3–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Savinova OV, Gerdes AM. Myocyte changes in heart failure. Heart Fail Clin. 2012;8:1–6.

    Article  PubMed  Google Scholar 

  5. Ruwhof C, van der Laarse A. Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways. Cardiovasc Res. 2000;47:23–37.

    Article  CAS  PubMed  Google Scholar 

  6. Tallarida RJ, Rusy BF, Loughnane MH. Left ventricular wall acceleration and the law of Laplace. Cardiovasc Res. 1970;4:217–23.

    Article  CAS  PubMed  Google Scholar 

  7. Lorell BH, Carabello BA. Left ventricular hypertrophy: pathogenesis, detection, and prognosis. Circulation. 2000;102:470–9.

    Article  CAS  PubMed  Google Scholar 

  8. Packer M. Neurohormonal interactions and adaptations in congestive heart failure. Circulation. 1988;77:721–30.

    Article  CAS  PubMed  Google Scholar 

  9. Cotton TF. Cardiac hypertrophy. Can Med Assoc J. 1914;4:709–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Stein BR, Barnes AR. Severity and duration of hypertension in relation to amount of cardiac hypertrophy. Am J Med Sci. 1948;216:661–4.

    Article  CAS  PubMed  Google Scholar 

  11. Hill JA, Olson EN. Cardiac plasticity. N Engl J Med. 2008;358:1370–80.

    Article  CAS  PubMed  Google Scholar 

  12. Laflamme MA, Murry CE. Heart regeneration. Nature. 2011;473:326–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Adler CP, Costabel U. Cell number in human heart in atrophy, hypertrophy, and under the influence of cytostatics. Recent Adv Stud Cardiac Struct Metab. 1975;6:343–55.

    CAS  PubMed  Google Scholar 

  14. Booz GW, Baker KM. Molecular signalling mechanisms controlling growth and function of cardiac fibroblasts. Cardiovasc Res. 1995;30:537–43.

    Article  CAS  PubMed  Google Scholar 

  15. McKay RG, Pfeffer MA, Pasternak RC, et al. Left ventricular remodeling after myocardial infarction: a corollary to infarct expansion. Circulation. 1986;74:693–702.

    Article  CAS  PubMed  Google Scholar 

  16. Souders CA, Borg TK, Banerjee I, Baudino TA. Pressure overload induces early morphological changes in the heart. Am J Pathol. 2012;181:1226–35.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Voelkl J, Lin Y, Alesutan I, et al. Sgk1 sensitivity of Na(+)/H(+) exchanger activity and cardiac remodeling following pressure overload. Basic Res Cardiol. 2012;107:236.

    Article  PubMed  CAS  Google Scholar 

  18. Nediani C, Formigli L, Perna AM, et al. Early changes induced in the left ventricle by pressure overload. An experimental study on swine heart. J Mol Cell Cardiol. 2000;32:131–42.

    Article  CAS  PubMed  Google Scholar 

  19. Brand T, Sharma HS, Schaper W. Expression of nuclear proto-oncogenes in isoproterenol-induced cardiac hypertrophy. J Mol Cell Cardiol. 1993;25:1325–37.

    Article  CAS  PubMed  Google Scholar 

  20. Sharif-Naeini R, Folgering JH, Bichet D, et al. Sensing pressure in the cardiovascular system: Gq-coupled mechanoreceptors and TRP channels. J Mol Cell Cardiol. 2010;48:83–9.

    Article  CAS  PubMed  Google Scholar 

  21. Inoue R, Jian Z, Kawarabayashi Y. Mechanosensitive TRP channels in cardiovascular pathophysiology. Pharmacol Ther. 2009;123:371–85.

    Article  CAS  PubMed  Google Scholar 

  22. Dyachenko V, Husse B, Rueckschloss U, Isenberg G. Mechanical deformation of ventricular myocytes modulates both TRPC6 and Kir2.3 channels. Cell Calcium. 2009;45:38–54.

    Article  CAS  PubMed  Google Scholar 

  23. Spassova MA, Hewavitharana T, Xu W, Soboloff J, Gill DL. A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci U S A. 2006;103:16586–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zou Y, Akazawa H, Qin Y, et al. Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol. 2004;6:499–506.

    Article  CAS  PubMed  Google Scholar 

  25. Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature. 1999;397:259–63.

    Article  CAS  PubMed  Google Scholar 

  26. Lemonnier L, Trebak M, Putney Jr JW. Complex regulation of the TRPC3, 6 and 7 channel subfamily by diacylglycerol and phosphatidylinositol-4,5-bisphosphate. Cell Calcium. 2008;43:506–14.

    Article  CAS  PubMed  Google Scholar 

  27. Molkentin JD, Lu JR, Antos CL, et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell. 1998;93:215–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bush EW, Hood DB, Papst PJ, et al. Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. J Biol Chem. 2006;281:33487–96.

    Article  CAS  PubMed  Google Scholar 

  29. Kuwahara K, Wang Y, McAnally J, et al. TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J Clin Invest. 2006;116:3114–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Srivastava D, Yu S. Stretching to meet needs: integrin-linked kinase and the cardiac pump. Genes Dev. 2006;20:2327–31.

    Article  CAS  PubMed  Google Scholar 

  31. Frank D, Frey N. Cardiac Z-disc signaling network. J Biol Chem. 2011;286:9897–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pyle WG, Solaro RJ. At the crossroads of myocardial signaling: the role of Z-discs in intracellular signaling and cardiac function. Circ Res. 2004;94:296–305.

    Article  CAS  PubMed  Google Scholar 

  33. Torsoni AS, Constancio SS, Nadruz Jr W, Hanks SK, Franchini KG. Focal adhesion kinase is activated and mediates the early hypertrophic response to stretch in cardiac myocytes. Circ Res. 2003;93:140–7.

    Article  CAS  PubMed  Google Scholar 

  34. Hoshijima M. Mechanical stress-strain sensors embedded in cardiac cytoskeleton: Z disk, titin, and associated structures. Am J Physiol Heart Circ Physiol. 2006;290:H1313–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Laser M, Willey CD, Jiang W, et al. Integrin activation and focal complex formation in cardiac hypertrophy. J Biol Chem. 2000;275:35624–30.

    Article  CAS  PubMed  Google Scholar 

  36. Kostin S, Scholz D, Shimada T, et al. The internal and external protein scaffold of the T-tubular system in cardiomyocytes. Cell Tissue Res. 1998;294:449–60.

    Article  CAS  PubMed  Google Scholar 

  37. Ahmed N, Riley C, Rice G, Quinn M. Role of integrin receptors for fibronectin, collagen and laminin in the regulation of ovarian carcinoma functions in response to a matrix microenvironment. Clin Exp Metastasis. 2005;22:391–402.

    Article  CAS  PubMed  Google Scholar 

  38. Taylor JM, Rovin JD, Parsons JT. A role for focal adhesion kinase in phenylephrine-induced hypertrophy of rat ventricular cardiomyocytes. J Biol Chem. 2000;275:19250–7.

    Article  CAS  PubMed  Google Scholar 

  39. Hauselmann SP, Rosc-Schluter BI, Lorenz V, et al. beta1-Integrin is up-regulated via Rac1-dependent reactive oxygen species as part of the hypertrophic cardiomyocyte response. Free Radic Biol Med. 2011;51:609–18.

    Article  PubMed  CAS  Google Scholar 

  40. Wei BR, Martin PL, Hoover SB, et al. Capacity for resolution of Ras-MAPK-initiated early pathogenic myocardial hypertrophy modeled in mice. Comp Med. 2011;61:109–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mederos Y, Schnitzler M, Storch U, Meibers S, et al. Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. EMBO J. 2008;27:3092–103.

    Article  CAS  Google Scholar 

  42. Gresset A, Sondek J, Harden TK. The phospholipase C isozymes and their regulation. Subcell Biochem. 2012;58:61–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Seth M, Zhang ZS, Mao L, et al. TRPC1 channels are critical for hypertrophic signaling in the heart. Circ Res. 2009;105:1023–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Freichel M, Schweig U, Stauffenberger S, Freise D, Schorb W, Flockerzi V. Store-operated cation channels in the heart and cells of the cardiovascular system. Cell Physiol Biochem. 1999;9:270–83.

    Article  CAS  PubMed  Google Scholar 

  45. Rockman HA, Ross RS, Harris AN, et al. Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc Natl Acad Sci U S A. 1991;88:8277–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang J, Paradis P, Aries A, et al. Convergence of protein kinase C and JAK-STAT signaling on transcription factor GATA-4. Mol Cell Biol. 2005;25:9829–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Prasad AM, Inesi G. Regulation and rate limiting mechanisms of Ca2+ ATPase (SERCA2) expression in cardiac myocytes. Mol Cell Biochem. 2012;361:85–96.

    Article  CAS  PubMed  Google Scholar 

  48. Zarain-Herzberg A, Fragoso-Medina J, Estrada-Aviles R. Calcium-regulated transcriptional pathways in the normal and pathologic heart. IUBMB Life. 2011;63:847–55.

    Article  CAS  PubMed  Google Scholar 

  49. Jessup M, Greenberg B, Mancini D, et al. Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+−ATPase in patients with advanced heart failure. Circulation. 2011;124:304–13.

    Article  CAS  PubMed  Google Scholar 

  50. Ling H, Zhang T, Pereira L, et al. Requirement for Ca2+/calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. J Clin Invest. 2009;119:1230–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dhandapany PS, Fabris F, Tonk R, et al. Cyclosporine attenuates cardiomyocyte hypertrophy induced by RAF1 mutants in Noonan and LEOPARD syndromes. J Mol Cell Cardiol. 2011;51:4–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Paoletti E, Marsano L, Bellino D, Cassottana P, Cannella G. Effect of everolimus on left ventricular hypertrophy of de novo kidney transplant recipients: a 1 year, randomized, controlled trial. Transplantation. 2012;93:503–8.

    Article  CAS  PubMed  Google Scholar 

  53. Di Marco GS, Reuter S, Kentrup D, et al. Cardioprotective effect of calcineurin inhibition in an animal model of renal disease. Eur Heart J. 2011;32:1935–45.

    Article  CAS  PubMed  Google Scholar 

  54. Hisamitsu T, Nakamura TY, Wakabayashi S. Na(+)/H(+) exchanger 1 directly binds to calcineurin A and activates downstream NFAT signaling, leading to cardiomyocyte hypertrophy. Mol Cell Biol. 2012;32:3265–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Joiner ML, Koval OM, Li J, et al. CaMKII determines mitochondrial stress responses in heart. Nature. 2012;491:269–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang Y, Zhu WZ, Joiner ML, et al. Calmodulin kinase II inhibition protects against myocardial cell apoptosis in vivo. Am J Physiol Heart Circ Physiol. 2006;291:H3065–75.

    Article  CAS  PubMed  Google Scholar 

  57. Wang HG, Pathan N, Ethell IM, et al. Ca2+−induced apoptosis through calcineurin dephosphorylation of BAD. Science. 1999;284:339–43.

    Article  CAS  PubMed  Google Scholar 

  58. Antos CL, McKinsey TA, Frey N, et al. Activated glycogen synthase-3 beta suppresses cardiac hypertrophy in vivo. Proc Natl Acad Sci U S A. 2002;99:907–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Stuenaes JT, Bolling A, Ingvaldsen A, et al. Beta-adrenoceptor stimulation potentiates insulin-stimulated PKB phosphorylation in rat cardiomyocytes via cAMP and PKA. Br J Pharmacol. 2010;160:116–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Webb IG, Nishino Y, Clark JE, et al. Constitutive glycogen synthase kinase-3alpha/beta activity protects against chronic beta-adrenergic remodelling of the heart. Cardiovasc Res. 2010;87:494–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hardt SE, Sadoshima J. Negative regulators of cardiac hypertrophy. Cardiovasc Res. 2004;63:500–9.

    Article  CAS  PubMed  Google Scholar 

  62. Tenhunen O, Sarman B, Kerkela R, et al. Mitogen-activated protein kinases p38 and ERK 1/2 mediate the wall stress-induced activation of GATA-4 binding in adult heart. J Biol Chem. 2004;279:24852–60.

    Article  CAS  PubMed  Google Scholar 

  63. Kerkela R, Pikkarainen S, Majalahti-Palviainen T, Tokola H, Ruskoaho H. Distinct roles of mitogen-activated protein kinase pathways in GATA-4 transcription factor-mediated regulation of B-type natriuretic peptide gene. J Biol Chem. 2002;277:13752–60.

    Article  CAS  PubMed  Google Scholar 

  64. Liang Q, Wiese RJ, Bueno OF, Dai YS, Markham BE, Molkentin JD. The transcription factor GATA4 is activated by extracellular signal-regulated kinase 1- and 2-mediated phosphorylation of serine 105 in cardiomyocytes. Mol Cell Biol. 2001;21:7460–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gao X, He X, Luo B, Peng L, Lin J, Zuo Z. Angiotensin II increases collagen I expression via transforming growth factor-beta1 and extracellular signal-regulated kinase in cardiac fibroblasts. Eur J Pharmacol. 2009;606:115–20.

    Article  CAS  PubMed  Google Scholar 

  66. Shivakumar K, Dostal DE, Boheler K, Baker KM, Lakatta EG. Differential response of cardiac fibroblasts from young adult and senescent rats to ANG II. Am J Physiol Heart Circ Physiol. 2003;284:H1454–9.

    Article  CAS  PubMed  Google Scholar 

  67. Katz AM. The cardiomyopathy of overload: a hypothesis. J Cardiovasc Pharmacol. 1991;18(Suppl 2):S68–71.

    Article  PubMed  Google Scholar 

  68. Eghbali M, Deva R, Alioua A, et al. Molecular and functional signature of heart hypertrophy during pregnancy. Circ Res. 2005;96:1208–16.

    Article  CAS  PubMed  Google Scholar 

  69. Duerr RL, Huang S, Miraliakbar HR, Clark R, Chien KR, Ross Jr J. Insulin-like growth factor-1 enhances ventricular hypertrophy and function during the onset of experimental cardiac failure. J Clin Invest. 1995;95:619–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Prosser BL, Ward CW, Lederer WJ. X-ROS signaling: rapid mechano-chemo transduction in heart. Science. 2011;333:1440–5.

    Article  CAS  PubMed  Google Scholar 

  71. Maejima Y, Kuroda J, Matsushima S, Ago T, Sadoshima J. Regulation of myocardial growth and death by NADPH oxidase. J Mol Cell Cardiol. 2011;50:408–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rajabi M, Kassiotis C, Razeghi P, Taegtmeyer H. Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail Rev. 2007;12:331–43.

    Article  CAS  PubMed  Google Scholar 

  73. Frank D, Kuhn C, Brors B, et al. Gene expression pattern in biomechanically stretched cardiomyocytes: evidence for a stretch-specific gene program. Hypertension. 2008;51:309–18.

    Article  CAS  PubMed  Google Scholar 

  74. Kuwahara K, Nishikimi T, Nakao K. Transcriptional regulation of the fetal cardiac gene program. J Pharmacol Sci. 2012;119:198–203.

    Article  CAS  PubMed  Google Scholar 

  75. Anversa P, Capasso JM. Loss of intermediate-sized coronary arteries and capillary proliferation after left ventricular failure in rats. Am J Physiol. 1991;260:H1552–60.

    CAS  PubMed  Google Scholar 

  76. Laguens R, Alvarez P, Vigliano C, et al. Coronary microcirculation remodeling in patients with idiopathic dilated cardiomyopathy. Cardiology. 2011;119:191–6.

    Article  PubMed  Google Scholar 

  77. Camici PG, Olivotto I, Rimoldi OE. The coronary circulation and blood flow in left ventricular hypertrophy. J Mol Cell Cardiol. 2012;52:857–64.

    Article  CAS  PubMed  Google Scholar 

  78. Friehs I, Margossian RE, Moran AM, Cao-Danh H, Moses MA, del Nido PJ. Vascular endothelial growth factor delays onset of failure in pressure-overload hypertrophy through matrix metalloproteinase activation and angiogenesis. Basic Res Cardiol. 2006;101:204–13.

    Article  CAS  PubMed  Google Scholar 

  79. Weber KT, Janicki JS, Shroff SG, Pick R, Chen RM, Bashey RI. Collagen remodeling of the pressure-overloaded, hypertrophied nonhuman primate myocardium. Circ Res. 1988;62:757–65.

    Article  CAS  PubMed  Google Scholar 

  80. Galie PA, Russell MW, Westfall MV, Stegemann JP. Interstitial fluid flow and cyclic strain differentially regulate cardiac fibroblast activation via AT1R and TGF-beta1. Exp Cell Res. 2012;318:75–84.

    Article  CAS  PubMed  Google Scholar 

  81. Ma F, Li Y, Jia L, et al. Macrophage-stimulated cardiac fibroblast production of IL-6 is essential for TGF beta/Smad activation and cardiac fibrosis induced by angiotensin II. PLoS One. 2012;7:e35144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fredj S, Bescond J, Louault C, Delwail A, Lecron JC, Potreau D. Role of interleukin-6 in cardiomyocyte/cardiac fibroblast interactions during myocyte hypertrophy and fibroblast proliferation. J Cell Physiol. 2005;204:428–36.

    Article  CAS  PubMed  Google Scholar 

  83. Melendez GC, McLarty JL, Levick SP, Du Y, Janicki JS, Brower GL. Interleukin 6 mediates myocardial fibrosis, concentric hypertrophy, and diastolic dysfunction in rats. Hypertension. 2010;56:225–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Martin ML, Blaxall BC. Cardiac intercellular communication: are myocytes and fibroblasts fair-weather friends? J Cardiovasc Transl Res. 2012;5:768–82.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ibrahim M, Gorelik J, Yacoub MH, Terracciano CM. The structure and function of cardiac t-tubules in health and disease. Proc Biol Sci/The Royal Society. 2011;278:2714–23.

    Google Scholar 

  86. Ribadeau Dumas A, Wisnewsky C, Boheler KR, Ter Keurs H, Fiszman MY, Schwartz K. The sarco(endo)plasmic reticulum Ca(2+)-ATPase gene is regulated at the transcriptional level during compensated left ventricular hypertrophy in the rat. C R Acad Sci III. 1997;320:963–9.

    Article  CAS  PubMed  Google Scholar 

  87. Crossman DJ, Ruygrok PN, Soeller C, Cannell MB. Changes in the organization of excitation-contraction coupling structures in failing human heart. PLoS One. 2011;6:e17901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang HB, Li RC, Xu M, et al. Ultrastructural uncoupling between T-tubules and sarcoplasmic reticulum in human heart failure. Cardiovasc Res. 2013;98:269–76.

    Article  CAS  PubMed  Google Scholar 

  89. Guo A, Zhang C, Wei S, Chen B, Song LS. Emerging mechanisms of T-tubule remodeling in heart failure. Cardiovasc Res. 2013;98:204–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Brette F, Orchard C. T-tubule function in mammalian cardiac myocytes. Circ Res. 2003;92:1182–92.

    Article  CAS  PubMed  Google Scholar 

  91. Kee AJ, Gunning PW, Hardeman EC. Diverse roles of the actin cytoskeleton in striated muscle. J Musc Res Cell Motil. 2009;30:187–97.

    Article  CAS  Google Scholar 

  92. Yang Z, Pascarel C, Steele DS, Komukai K, Brette F, Orchard CH. Na+−Ca2+ exchange activity is localized in the T-tubules of rat ventricular myocytes. Circ Res. 2002;91:315–22.

    Article  CAS  PubMed  Google Scholar 

  93. Laflamme MA, Becker PL. G(s) and adenylyl cyclase in transverse tubules of heart: implications for cAMP-dependent signaling. Am J Physiol. 1999;277:H1841–8.

    CAS  PubMed  Google Scholar 

  94. Nikolaev VO, Moshkov A, Lyon AR, et al. Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science. 2010;327:1653–7.

    Article  CAS  PubMed  Google Scholar 

  95. Wei S, Guo A, Chen B, et al. T-tubule remodeling during transition from hypertrophy to heart failure. Circ Res. 2010;107:520–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. He J, Conklin MW, Foell JD, et al. Reduction in density of transverse tubules and L-type Ca(2+) channels in canine tachycardia-induced heart failure. Cardiovasc Res. 2001;49:298–307.

    Article  CAS  PubMed  Google Scholar 

  97. Ibrahim M, Navaratnarajah M, Siedlecka U, et al. Mechanical unloading reverses transverse tubule remodelling and normalizes local Ca(2+)-induced Ca(2+)release in a rodent model of heart failure. Eur J Heart Fail. 2012;14:571–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jolley RL, Cheldelin VH, Newburgh RW. Glucose catabolism in fetal and adult heart. J Biol Chem. 1958;233:1289–94.

    CAS  PubMed  Google Scholar 

  99. Sack MN, Rader TA, Park S, Bastin J, McCune SA, Kelly DP. Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation. 1996;94:2837–42.

    Article  CAS  PubMed  Google Scholar 

  100. Abdalla S, Fu X, Elzahwy SS, Klaetschke K, Streichert T, Quitterer U. Up-regulation of the cardiac lipid metabolism at the onset of heart failure. Cardiovasc Hematol Agents Med Chem. 2011;9:190–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Meng RS, Pei ZH, Yin R, et al. Adenosine monophosphate-activated protein kinase inhibits cardiac hypertrophy through reactivating peroxisome proliferator-activated receptor-alpha signaling pathway. Eur J Pharmacol. 2009;620:63–70.

    Article  CAS  PubMed  Google Scholar 

  102. Karbowska J, Kochan Z, Smolenski RT. Peroxisome proliferator-activated receptor alpha is downregulated in the failing human heart. Cell Mol Biol Lett. 2003;8:49–53.

    CAS  PubMed  Google Scholar 

  103. el Azzouzi H, Leptidis S, Bourajjaj M, van Bilsen M, da Costa Martins PA, De Windt LJ. MEK1 inhibits cardiac PPARalpha activity by direct interaction and prevents its nuclear localization. PLoS One. 2012;7:e36799.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Alibin CP, Kopilas MA, Anderson HD. Suppression of cardiac myocyte hypertrophy by conjugated linoleic acid: role of peroxisome proliferator-activated receptors alpha and gamma. J Biol Chem. 2008;283:10707–15.

    Article  CAS  PubMed  Google Scholar 

  105. Tuunanen H, Engblom E, Naum A, et al. Decreased myocardial free fatty acid uptake in patients with idiopathic dilated cardiomyopathy: evidence of relationship with insulin resistance and left ventricular dysfunction. J Card Fail. 2006;12:644–52.

    Article  CAS  PubMed  Google Scholar 

  106. Chokshi A, Drosatos K, Cheema FH, et al. Ventricular assist device implantation corrects myocardial lipotoxicity, reverses insulin resistance, and normalizes cardiac metabolism in patients with advanced heart failure. Circulation. 2012;125:2844–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Levine B, Kalman J, Mayer L, Fillit HM, Packer M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med. 1990;323:236–41.

    Article  CAS  PubMed  Google Scholar 

  108. Testa M, Yeh M, Lee P, et al. Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension. J Am Coll Cardiol. 1996;28:964–71.

    Article  CAS  PubMed  Google Scholar 

  109. Kell R, Haunstetter A, Dengler TJ, Zugck C, Kubler W, Haass M. Do cytokines enable risk stratification to be improved in NYHA functional class III patients? Comparison with other potential predictors of prognosis. Eur Heart J. 2002;23:70–8.

    Article  CAS  PubMed  Google Scholar 

  110. Ferrari R, Bachetti T, Confortini R, et al. Tumor necrosis factor soluble receptors in patients with various degrees of congestive heart failure. Circulation. 1995;92:1479–86.

    Article  CAS  PubMed  Google Scholar 

  111. Devaux B, Scholz D, Hirche A, Klovekorn WP, Schaper J. Upregulation of cell adhesion molecules and the presence of low grade inflammation in human chronic heart failure. Eur Heart J. 1997;18:470–9.

    Article  CAS  PubMed  Google Scholar 

  112. Baumgarten G, Knuefermann P, Kalra D, et al. Load-dependent and -independent regulation of proinflammatory cytokine and cytokine receptor gene expression in the adult mammalian heart. Circulation. 2002;105:2192–7.

    Article  CAS  PubMed  Google Scholar 

  113. Yokoyama T, Nakano M, Bednarczyk JL, McIntyre BW, Entman M, Mann DL. Tumor necrosis factor-alpha provokes a hypertrophic growth response in adult cardiac myocytes. Circulation. 1997;95:1247–52.

    Article  CAS  PubMed  Google Scholar 

  114. Bozkurt B, Kribbs SB, Clubb Jr FJ, et al. Pathophysiologically relevant concentrations of tumor necrosis factor-alpha promote progressive left ventricular dysfunction and remodeling in rats. Circulation. 1998;97:1382–91.

    Article  CAS  PubMed  Google Scholar 

  115. del Vescovo CD, Cotecchia S, Diviani D. A-kinase-anchoring protein-Lbc anchors IkappaB kinase beta to support interleukin-6-mediated cardiomyocyte hypertrophy. Mol Cell Biol. 2013;33:14–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Stanciu AE, Vatasescu RG, Stanciu MM, Iorgulescu C, Vasile AI, Dorobantu M. Cardiac resynchronization therapy in patients with chronic heart failure is associated with anti-inflammatory and anti-remodeling effects. Clin Biochem. 2013;46:230–4.

    Article  CAS  PubMed  Google Scholar 

  117. Osmancik P, Herman D, Stros P, Linkova H, Vondrak K, Paskova E. Changes and prognostic impact of apoptotic and inflammatory cytokines in patients treated with cardiac resynchronization therapy. Cardiology. 2013;124:190–8.

    Article  CAS  PubMed  Google Scholar 

  118. Kostin S, Pool L, Elsasser A, et al. Myocytes die by multiple mechanisms in failing human hearts. Circ Res. 2003;92:715–24.

    Article  CAS  PubMed  Google Scholar 

  119. Russell 3rd RR, Li J, Coven DL, et al. AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. The J Clin Invest. 2004;114:495–503.

    Article  CAS  PubMed  Google Scholar 

  120. Zhu H, Tannous P, Johnstone JL, et al. Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest. 2007;117:1782–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Shende P, Plaisance I, Morandi C, et al. Cardiac raptor ablation impairs adaptive hypertrophy, alters metabolic gene expression, and causes heart failure in mice. Circulation. 2011;123:1073–82.

    Article  PubMed  Google Scholar 

  122. Sharov VG, Sabbah HN, Shimoyama H, Goussev AV, Lesch M, Goldstein S. Evidence of cardiocyte apoptosis in myocardium of dogs with chronic heart failure. Am J Pathol. 1996;148:141–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Narula J, Haider N, Virmani R, et al. Apoptosis in myocytes in end-stage heart failure. N Engl J Med. 1996;335:1182–9.

    Article  CAS  PubMed  Google Scholar 

  124. Dutka DP, Elborn JS, Delamere F, Shale DJ, Morris GK. Tumour necrosis factor alpha in severe congestive cardiac failure. Br Heart J. factor in chronic heart failure with cachexia. Int J Cardiol. 1997;58:257–61.

    Google Scholar 

  125. Zhao SP, Zeng LH. Elevated plasma levels of tumor necrosis factor in chronic heart failure with cachexia. Int J Cardiol. 1997;58:257–61.

    Google Scholar 

  126. Nozaki N, Yamaguchi S, Shirakabe M, Nakamura H, Tomoike H. Soluble tumor necrosis factor receptors are elevated in relation to severity of congestive heart failure. Jpn Circ J. 1997;61:657–64.

    Article  CAS  PubMed  Google Scholar 

  127. Sun M, Chen M, Dawood F, et al. Tumor necrosis factor-alpha mediates cardiac remodeling and ventricular dysfunction after pressure overload state. Circulation. 2007;115:1398–407.

    Article  CAS  PubMed  Google Scholar 

  128. Stamm C, Friehs I, Cowan DB, et al. Inhibition of tumor necrosis factor-alpha improves postischemic recovery of hypertrophied hearts. Circulation. 2001;104:I350–5.

    Article  CAS  PubMed  Google Scholar 

  129. Haudek SB, Taffet GE, Schneider MD, Mann DL. TNF provokes cardiomyocyte apoptosis and cardiac remodeling through activation of multiple cell death pathways. J Clin Invest. 2007;117:2692–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Crow MT, Mani K, Nam YJ, Kitsis RN. The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res. 2004;95:957–70.

    Article  CAS  PubMed  Google Scholar 

  131. Al-Lamki RS, Brookes AP, Wang J, et al. TNF receptors differentially signal and are differentially expressed and regulated in the human heart. Am J Transplant. 2009;9:2679–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol. 1995;146:3–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Weerasinghe P, Buja LM. Oncosis: an important non-apoptotic mode of cell death. Exp Mol Pathol. 2012;93:302–8.

    Article  CAS  PubMed  Google Scholar 

  134. Tomanek RJ, Palmer PJ, Peiffer GL, Schreiber KL, Eastham CL, Marcus ML. Morphometry of canine coronary arteries, arterioles, and capillaries during hypertension and left ventricular hypertrophy. Circ Res. 1986;58:38–46.

    Article  CAS  PubMed  Google Scholar 

  135. Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 2003;114:181–90.

    Article  CAS  PubMed  Google Scholar 

  136. Whelan RS, Kaplinskiy V, Kitsis RN. Cell death in the pathogenesis of heart disease: mechanisms and significance. Ann Rev Physiol. 2010;72:19–44.

    Article  CAS  Google Scholar 

  137. Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ. Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell. 2006;22:245–57.

    Article  CAS  PubMed  Google Scholar 

  138. He S, Wang L, Miao L, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell. 2009;137:1100–11.

    Article  CAS  PubMed  Google Scholar 

  139. Holler N, Zaru R, Micheau O, et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol. 2000;1:489–95.

    Article  CAS  PubMed  Google Scholar 

  140. Riehle C, Abel ED. PGC-1 proteins and heart failure. Trends Cardiovasc Med. 2012;22:98–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Riehle C, Wende AR, Zaha VG, et al. PGC-1beta deficiency accelerates the transition to heart failure in pressure overload hypertrophy. Circ Res. 2011;109:783–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004;18:357–68.

    Article  CAS  PubMed  Google Scholar 

  143. Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP. Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest. 2000;106:847–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Leon H, Baczko I, Sawicki G, Light PE, Schulz R. Inhibition of matrix metalloproteinases prevents peroxynitrite-induced contractile dysfunction in the isolated cardiac myocyte. Br J Pharmacol. 2008;153:676–83.

    Article  CAS  PubMed  Google Scholar 

  145. Marti CN, Gheorghiade M, Kalogeropoulos AP, Georgiopoulou VV, Quyyumi AA, Butler J. Endothelial dysfunction, arterial stiffness, and heart failure. J Am Coll Cardiol. 2012;60:1455–69.

    Article  CAS  PubMed  Google Scholar 

  146. Silberman GA, Fan TH, Liu H, et al. Uncoupled cardiac nitric oxide synthase mediates diastolic dysfunction. Circulation. 2010;121:519–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wang W, Sawicki G, Schulz R. Peroxynitrite-induced myocardial injury is mediated through matrix metalloproteinase-2. Cardiovasc Res. 2002;53:165–74.

    Article  CAS  PubMed  Google Scholar 

  148. Braunwald E. Biomarkers in heart failure. Preface. Heart Fail Clin. 2009;5:xiii–xiv.

    Article  PubMed  Google Scholar 

  149. Maisel AS, Krishnaswamy P, Nowak RM, et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med. 2002;347:161–7.

    Article  CAS  PubMed  Google Scholar 

  150. Shimpo M, Morrow DA, Weinberg EO, et al. Serum levels of the interleukin-1 receptor family member ST2 predict mortality and clinical outcome in acute myocardial infarction. Circulation. 2004;109:2186–90.

    Article  CAS  PubMed  Google Scholar 

  151. Dhillon OS, Narayan HK, Khan SQ, et al. Pre-discharge risk stratification in unselected STEMI: Is there a role for ST2 or its natural ligand IL-33 when compared with contemporary risk markers? Int J Cardiol. 2013;167:2182–8.

    Article  PubMed  Google Scholar 

  152. Mishra RK, Li Y, Defilippi C, et al. Association of cardiac troponin T with left ventricular structure and function in CKD. Am J Kidney Dis. 2013;61(5):701–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lowbeer C, Gustafsson SA, Seeberger A, Bouvier F, Hulting J. Serum cardiac troponin T in patients hospitalized with heart failure is associated with left ventricular hypertrophy and systolic dysfunction. Scand J Clin Lab Invest. 2004;64:667–76.

    Article  CAS  PubMed  Google Scholar 

  154. Sato Y, Yamamoto E, Sawa T, et al. High-sensitivity cardiac troponin T in essential hypertension. J Cardiol. 2011;58:226–31.

    Article  PubMed  Google Scholar 

  155. Negishi K, Kobayashi M, Ochiai I, et al. Association between fibroblast growth factor 23 and left ventricular hypertrophy in maintenance hemodialysis patients. Comparison with B-type natriuretic peptide and cardiac troponin T. Circ J. 2010;74:2734–40.

    Article  CAS  PubMed  Google Scholar 

  156. Kubo T, Kitaoka H, Okawa M, et al. Serum cardiac troponin I is related to increased left ventricular wall thickness, left ventricular dysfunction, and male gender in hypertrophic cardiomyopathy. Clin Cardiol. 2010;33:E1–7.

    Article  PubMed  Google Scholar 

  157. Moreno V, Hernandez-Romero D, Vilchez JA, et al. Serum levels of high-sensitivity troponin T: a novel marker for cardiac remodeling in hypertrophic cardiomyopathy. J Card Fail. 2010;16:950–6.

    Article  CAS  PubMed  Google Scholar 

  158. Sundstrom J, Ingelsson E, Berglund L, et al. Cardiac troponin-I and risk of heart failure: a community-based cohort study. Eur Heart J. 2009;30:773–81.

    Article  PubMed  CAS  Google Scholar 

  159. Kawahara C, Tsutamoto T, Nishiyama K, et al. Prognostic role of high-sensitivity cardiac troponin T in patients with nonischemic dilated cardiomyopathy. Circ J. 2011;75:656–61.

    Article  PubMed  Google Scholar 

  160. Biolo A, Fisch M, Balog J, et al. Episodes of acute heart failure syndrome are associated with increased levels of troponin and extracellular matrix markers. Circ Heart Fail. 2010;3:44–50.

    Article  CAS  PubMed  Google Scholar 

  161. Zile MR, Desantis SM, Baicu CF, et al. Plasma biomarkers that reflect determinants of matrix composition identify the presence of left ventricular hypertrophy and diastolic heart failure. Circ Heart Fail. 2011;4:246–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Anand IS, Latini R, Florea VG, et al. C-reactive protein in heart failure: prognostic value and the effect of valsartan. Circulation. 2005;112:1428–34.

    Article  CAS  PubMed  Google Scholar 

  163. Suzuki T, Katz R, Jenny NS, et al. Metabolic syndrome, inflammation, and incident heart failure in the elderly: the cardiovascular health study. Circ Heart Fail. 2008;1:242–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bahrami H, Bluemke DA, Kronmal R, et al. Novel metabolic risk factors for incident heart failure and their relationship with obesity: the MESA (Multi-Ethnic Study of Atherosclerosis) study. J Am Coll Cardiol. 2008;51:1775–83.

    Article  CAS  PubMed  Google Scholar 

  165. Barac A, Wang H, Shara NM, et al. Markers of inflammation, metabolic risk factors, and incident heart failure in American Indians: the strong heart study. J Clin Hypertens. 2012;14:13–9.

    Article  Google Scholar 

  166. Deswal A, Petersen NJ, Feldman AM, Young JB, White BG, Mann DL. Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone trial (VEST). Circulation. 2001;103:2055–9.

    Article  CAS  PubMed  Google Scholar 

  167. Orus J, Roig E, Perez-Villa F, et al. Prognostic value of serum cytokines in patients with congestive heart failure. J Heart Lung Transplant. 2000;19:419–25.

    Article  CAS  PubMed  Google Scholar 

  168. Liu FT, Yang RY, Hsu DK. Galectins in acute and chronic inflammation. Ann N Y Acad Sci. 2012;1253:80–91.

    Article  CAS  PubMed  Google Scholar 

  169. Ueland T, Aukrust P, Broch K, et al. Galectin-3 in heart failure: high levels are associated with all-cause mortality. Int J Cardiol. 2011;150:361–4.

    Article  PubMed  Google Scholar 

  170. Anand IS, Rector TS, Kuskowski M, Adourian A, Muntendam P, Cohn JN. Baseline and serial measurements of galectin-3 in patients with heart failure: relationship to prognosis and effect of treatment with valsartan in the Val-HeFT. Eur J Heart Fail. 2013;15:511–8.

    Article  CAS  PubMed  Google Scholar 

  171. Pentassuglia L, Sawyer DB. ErbB/integrin signaling interactions in regulation of myocardial cell-cell and cell-matrix interactions. Biochim Biophys Acta. 2013;1833(4):909–16.

    Article  CAS  PubMed  Google Scholar 

  172. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344:783–92.

    Article  CAS  PubMed  Google Scholar 

  173. Ky B, Kimmel SE, Safa RN, et al. Neuregulin-1 beta is associated with disease severity and adverse outcomes in chronic heart failure. Circulation. 2009;120:310–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Jabbour A, Hayward CS, Keogh AM, et al. Parenteral administration of recombinant human neuregulin-1 to patients with stable chronic heart failure produces favourable acute and chronic haemodynamic responses. Eur J Heart Fail. 2011;13:83–92.

    Article  CAS  PubMed  Google Scholar 

  175. Mann DL. MicroRNAs and the failing heart. N Engl J Med. 2007;356:2644–5.

    Article  CAS  PubMed  Google Scholar 

  176. van Rooij E, Sutherland LB, Liu N, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Pro Nat Acad Sci USA. 2006;103:18255–60.

    Article  CAS  Google Scholar 

  177. Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Pro Natl Acad Sci U S A. 2008;105:10513–8.

    Article  CAS  Google Scholar 

  178. Tijsen AJ, Creemers EE, Moerland PD, et al. MiR423-5p as a circulating biomarker for heart failure. Circ Res. 2010;106:1035–9.

    Article  CAS  PubMed  Google Scholar 

  179. Goren Y, Kushnir M, Zafrir B, Tabak S, Lewis BS, Amir O. Serum levels of microRNAs in patients with heart failure. Eur J Heart Fail. 2012;14:147–54.

    Article  CAS  PubMed  Google Scholar 

  180. Tutarel O, Dangwal S, Bretthauer J, et al. Circulating miR-423_5p fails as a biomarker for systemic ventricular function in adults after atrial repair for transposition of the great arteries. Int J Cardiol. 2013;167:63–6.

    Article  PubMed  Google Scholar 

  181. Fukushima Y, Nakanishi M, Nonogi H, Goto Y, Iwai N. Assessment of plasma miRNAs in congestive heart failure. Circ J. 2011;75:336–40.

    Article  CAS  PubMed  Google Scholar 

  182. Corsten MF, Dennert R, Jochems S, et al. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet. 2010;3:499–506.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Christian Schulze MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag London

About this chapter

Cite this chapter

Givens, R.C., Schulze, P.C. (2017). Molecular Changes in Heart Failure. In: Eisen, H. (eds) Heart Failure. Springer, London. https://doi.org/10.1007/978-1-4471-4219-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4219-5_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4218-8

  • Online ISBN: 978-1-4471-4219-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics