The Polyol Process

  • Fernand Fiévet
  • Roberta Brayner


Among the chemical, physical, or electrochemical processes generally used in particles production, the polyol-mediated synthesis of inorganic nanoparticles appears as an easy to carry out and versatile route. In this chapter, properties of polyols (α-diols and etherglycols) are first recalled in order to explain the versatility of this process. Guidelines which allow controlling the nucleation and growth steps in such media are then given in order to obtain particles with well-defined characteristics namely, a uniform shape, a mean size in the micron, submicron or nanometer range with a narrow size distribution, and a low degree of agglomeration. Examples of size tuning of ferromagnetic metals (Fe, Co, Ni, and their alloys) and noble metals are given as well as examples of shape control leading to 1D nanostructures with a particulate emphasis on the growth mechanism of silver nanorods or nanowires. Examples of polyol-mediated synthesis of oxide (spinel ferrites, Cu2O, ZnO) nanoparticles through hydrolysis reaction are also given. Throughout this chapter it is pointed out how the polyol process allows tuning the size and shape-dependent magnetic properties of ferromagnetic metal or spinel ferrite particles which may be used as advanced functional materials in various fields: high permeability composite materials, high density recording media, high temperature permanent magnets, and in biomedical applications such as magnetic resonance imaging, cancer treatment by hyperthermia, or targeted drug delivery


Surface Enhance Raman Spectroscopy Narrow Size Distribution Growth Step Surface Enhance Raman Spectroscopy Polyol Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    US Patent : 4 539 041 (1985) Europe Patent : 0 113 281, 1987Google Scholar
  2. 2.
    Fiévet F, Lagier J-P, Figlarz M (1989) MRS Bull 14:29–34Google Scholar
  3. 3.
    Fiévet F, Lagier J-P, Blin B, Beaudoin B, Figlarz M (1989) Solid State Ion 32(33):l98–205Google Scholar
  4. 4.
    Fiévet F, Fiévet-Vincent F, Lagier J-P, Dumont B, Figlarz M (1993) J Mater Chem 3:627–632CrossRefGoogle Scholar
  5. 5.
    Silvert P-Y, Tekaia-Elhsissen K (1995) Solid State Ion 82:53–60CrossRefGoogle Scholar
  6. 6.
    Ducamp-Sanguesa C, Herrera-Urbina R, Figlarz M (1993) Solid State Ion 63–65:25–30CrossRefGoogle Scholar
  7. 7.
    Ducamp-Sanguesa C, Herrera-Urbina R, Figlarz M (1992) J Solid State Chem 100:272–280CrossRefGoogle Scholar
  8. 8.
    Silvert P-Y, Herrera-Urbina R, Duvauchelle N, Vijayakrishnan V, Tekaia-Elhsissen K (1996) J Mater Chem 6:573–577CrossRefGoogle Scholar
  9. 9.
    Silvert P-Y, Vijayakrishnan V, Vibert P, Herrera-Urbina R, Tekaia-Elhsissen K (1996) Nanostruct Mater 7:611–618CrossRefGoogle Scholar
  10. 10.
    Tekaia-Elhsissen K, Bonet F, Silvert P-Y, Herrera-Urbina R (1999) J Alloy Compd 292:96–99CrossRefGoogle Scholar
  11. 11.
    Toneguzzo P, Viau G, Acher O, Fiévet-Vincent F, Fiévet F (1998) Adv Mater 10:1032–1035CrossRefGoogle Scholar
  12. 12.
    Viau G, Fiévet-Vincent F, Fiévet F (1996) J Mater Chem 6:1047–1053CrossRefGoogle Scholar
  13. 13.
    Toneguzzo P, Viau G, Acher O, Guillet F, Bruneton E, Fiévet-Vincent F, Fiévet F (2000) J Mater Sci 35:3767–3784CrossRefGoogle Scholar
  14. 14.
    Jézéquel D, Guenot J, Jouini N, Fiévet F (1995) J Mater Res 10:77–83CrossRefGoogle Scholar
  15. 15.
    Feldmann C, Merikhi J (2000) J Colloid Interface Sci 223:229–234CrossRefGoogle Scholar
  16. 16.
    Feldmann C, Jungk HO (2001) Angew Chem Int Ed 40:359–362CrossRefGoogle Scholar
  17. 17.
    Ammar S, Helfen A, Jouini N, Fiévet F, Villain F, Rosenman I, Danot M, Molinié Ph (2001) J Mater Chem 10:186–192CrossRefGoogle Scholar
  18. 18.
    Poul L, Ammar S, Jouini N, Fiévet F, Villain F (2001) Solid State Sci 3:31–42CrossRefGoogle Scholar
  19. 19.
    Poul L, Ammar S, Jouini N, Fiévet F, Villain F (2003) J. Sol-Gel Sci Tech 26:261–265CrossRefGoogle Scholar
  20. 20.
    Poul L, Jouini N, Fiévet F (2000) Chem Mater 12:3123–3132CrossRefGoogle Scholar
  21. 21.
    Feldmann C, Metzmacher C (2001) J Mater Chem 11:2603–2606CrossRefGoogle Scholar
  22. 22.
    Antoun T, Brayner R, Al Terary S, Fiévet F, Chehimi M, Yassar A (2007) Eur J Inorg Chem 1275–1284Google Scholar
  23. 23.
    Al Terary S, Mangeney C, Brayner R, Antoun T, Fiévet F, Yassar A (2008) Sens Lett 6:511–517CrossRefGoogle Scholar
  24. 24.
    Feldmann C, Jungk H-O (2002) J Mater Sci 37:3251–3254CrossRefGoogle Scholar
  25. 25.
    Roming M, Feldmann C (2008) J Mater Sci 43:5504–5507CrossRefGoogle Scholar
  26. 26.
    Feldmann C (2003) Adv Funct Mater 13:101–107CrossRefGoogle Scholar
  27. 27.
    Wiley B, Sun Y, Mayers B, Xia Y (2005) Chem Eur J 11:454–463CrossRefGoogle Scholar
  28. 28.
    Luna C, Morales MP, Serna CJ, Vazquez M (2003) Mater Sci Eng C Biomimetic and Supramol Sys C23(6–8):1129–1132CrossRefGoogle Scholar
  29. 29.
    Viau G, Toneguzzo P, Pierrard A, Acher O, Fiévet-Vincent F, Fiévet F (2001) Scripta Mater 44:2263–2267CrossRefGoogle Scholar
  30. 30.
    Ung D, Viau G, Fiévet-Vincent F, Herbst F, Richard V, Fiévet F (2005) Prog Solid State Chem 33:137–145CrossRefGoogle Scholar
  31. 31.
    Soumare Y, Garcia C, Maurer T, Chaboussant G, Ott F, Fiévet F, Piquemal J-Y, Viau G (2009) Adv Funct Mat 19(12):1971–1977CrossRefGoogle Scholar
  32. 32.
    Ung D, Viau G, Ricolleau C, Warmont F, Gredin P, Fiévet F (2005) Adv Mater 17:338–344CrossRefGoogle Scholar
  33. 33.
    Sun Y, Gates B, Mayers B, Xia Y (2002) Nano Lett 2:165–168MATHCrossRefGoogle Scholar
  34. 34.
    Chkoundali S, Ammar S, Jouini N, Fiévet F, Molinié P, Danot M, Villain F, Grenèche J-M (2004) J Phys Condens Matter 16:4357–4372Google Scholar
  35. 35.
    Ammar S, Jouini N, Fiévet F, Stephan O, Marhic C, Richard M, Villain F, Cartier dit Moulin Ch, Brice S, Sainctavit P (2004) J Non-Crystal Solids 345 and 346:658–662Google Scholar
  36. 36.
    Caruntu D, Remond Y, Chou NH, Jun M-J, Caruntu G, He J, Goloverda G, O’Connor C, Kolesnichenko V (2002) Inorg Chem 41:6137–6146Google Scholar
  37. 37.
    Wang W–W (2008) Mater Chem Phys (2008) 108:227–231Google Scholar
  38. 38.
    Gold SH, Bruce RW, Fliflet AW, Lewis D, Kurihara LK, Imam MA (2007) Rev Sci Instrum 78:023901/1-023901/6Google Scholar
  39. 39.
    Nishioka M, Miyakawa M, Kataoka H, Koda H, Sato K, Suzuki TM (2011) Nanoscale 3:2621–2626CrossRefGoogle Scholar
  40. 40.
    LaMer VK, Dinegar RH (1950) J Am Chem Soc 72:4847–4854CrossRefGoogle Scholar
  41. 41.
    Viau G, Fiévet-Vincent F, Fiévet F (1996) Solid State Ion 84:259–270CrossRefGoogle Scholar
  42. 42.
    Silvert P-Y, Herrera-Urbina R, Tekaia-Elhsissen K (1997) J Mater Chem 7:293–299CrossRefGoogle Scholar
  43. 43.
    Joseyphus RJ, Kodama D, Matsumoto T, Sato Y, Jeyadevan B, Tohji K (2007) J Magn Magn Mater 310:2393–2395CrossRefGoogle Scholar
  44. 44.
    Joseyphus RJ, Shinoda K, Kodama D, Jeyadevan B (2010) Mater Chem Phys 123:487–493CrossRefGoogle Scholar
  45. 45.
    Kodama D, Shinoda K, Sato K, Konno Y, Joseyphus RJ, Motomiya K, Takahashi H, Matsumoto T, Sato Y, Tohji K, Jeyadevan B (2006) Adv Mater 18:3154–3159CrossRefGoogle Scholar
  46. 46.
    Takahashi M, Ogawa T, Hasegawa D, Jeyadevan B (2005) J Appl Phys 97:10J307-1-6Google Scholar
  47. 47.
    Dumestre F, Chaudret B, Amiens C, Respaud M, Fejes P, Renaud P, Zurcher P (2003) Angew Chem Int Ed 42:5213–5216CrossRefGoogle Scholar
  48. 48.
    Zang Z, Dai S, Blom D, Shen J (2002) Chem Mater 14:965–968CrossRefGoogle Scholar
  49. 49.
    Ung D, Soumare Y, Chakroune N, Viau G, Vaulay M-J, Richard V, Fiévet F (2007) Chem Mater 19:2084–2094CrossRefGoogle Scholar
  50. 50.
    Maurer T, Ott F, Chaboussant G, Soumare Y, Piquemal J-Y, Viau G (2007) Appl Phys Lett 91:172501CrossRefGoogle Scholar
  51. 51.
    Bonet F, Delmas V, Grugeon S, Herrera Urbina R, Silvert P-Y, Tekaia-Elhsissen K (1999) Nanostruct Mater 11:1277–1284CrossRefGoogle Scholar
  52. 52.
    Silvert P-Y, Herrera-Urbina R, Tekaia-Elhsissen K (1997) J Mater Chem 7:293–299CrossRefGoogle Scholar
  53. 53.
    Viau G, Brayner R, Poul L, Chakroune N, Lacaze E, Fiévet-Vincent F, Fiévet F (2003) Chem Mater 15:486–494CrossRefGoogle Scholar
  54. 54.
    Sun Y, Mayers B, Herricks T, Xia Y (2003) Nano Lett 3:955–960CrossRefGoogle Scholar
  55. 55.
    Wiley B, Herricks T, Sun Y, Xia Y (2004) Nano Lett 4:1733–1739CrossRefGoogle Scholar
  56. 56.
    Korte KE, Skrabalak SE, Xia Y (2008) J Mater Chem 18:437–441CrossRefGoogle Scholar
  57. 57.
    Chen J, Herricks T, Geissler M, Xia Y (2004) J Am Chem Soc 126:10854–10855CrossRefGoogle Scholar
  58. 58.
    Xiong Y, Chen J, Wiley B, Xia Y (2005) J Am Chem Soc 127:7332–7333CrossRefGoogle Scholar
  59. 59.
    Poul L (2000) PhD-Thesis. University Pierre et Marie Curie, Paris, FranceGoogle Scholar
  60. 60.
    Jouini N, Poul L, Robert F, Fiévet F (1995) Eur J Solid State Inorg Chem 32:1129–1136Google Scholar
  61. 61.
    Sanchez C, Livage J (1990) New J Chem 14:513–521Google Scholar
  62. 62.
    Ben Tahar L, Smiri LS, Artus M, Joudrier A-L, Herbst F, Vaulay M-J, Ammar S, Fiévet F (2007) Mater Res Bull 42:1888–1896Google Scholar
  63. 63.
    Artus M, Ammar S, Sicard L, Piquemal J-Y, Herbst F, Vaulay M-J, Fiévet F, Richard V (2008) Chem Mater 20:4861–4872CrossRefGoogle Scholar
  64. 64.
    Beji Z, Ben Chaabane T, Smiri LS, Ammar S, Fiévet F, Jouini N, Grenèche JM (2006) Phys Stat sol (a) 203:504–512CrossRefGoogle Scholar
  65. 65.
    Basti H, Ben Tahar L, Smiri LS, Herbst F, Vaulay M-J, Chau F, Ammar S, Benderbous S (2010) J Colloid Interface Sci 341:248–254CrossRefGoogle Scholar
  66. 66.
    Basti H (2010) PhD-Thesis. University Paris Diderot, Paris, FranceGoogle Scholar
  67. 67.
    Beji Z, Hanini A, Smiri LS, Gavard J, Kacem K, Villain F, Grenèche J-M, Chau F, Ammar S (2010) Chem Mater 22:5420–5429CrossRefGoogle Scholar
  68. 68.
    Ammar S, Jouini N, Fiévet F, Beji Z, Smiri L, Molinié P, Danot M, Grenèche JM (2006) J Phys Condens Mater 18:9055–9069CrossRefGoogle Scholar
  69. 69.
    Grugeon S, Laruelle S, Herrera-Urbina R, Dupont L, Poizot P, Tarascon J-M (2001) J Electrochem Soc 148:A285–A292Google Scholar
  70. 70.
    Orel ZC, Anzlovar A, Drazic G, Zigon M (2007) Cryst Growth Des 7:453–458CrossRefGoogle Scholar
  71. 71.
    Huang L, Peng F, Yu H, Wang H (2008) Mater Res Bull 43:3047–3053CrossRefGoogle Scholar
  72. 72.
    Park JC, Kim J, Kwon H, Song H (2009) Adv Mater 21:803–807CrossRefGoogle Scholar
  73. 73.
    Dakhlaoui A, Jendoubi M, Smiri LS, Kanaev A, Jouini N (2009) J Cryst Growth 311:3989–3996CrossRefGoogle Scholar
  74. 74.
    Wan J, Cai W, Meng X, Liu E (2007) Chem Commun 47:5004–5006CrossRefGoogle Scholar
  75. 75.
    Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti M, Fiévet F (2006) Nano Lett 6:866–870CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Laboratoire ITODYS, University of Paris Diderot, Sorbonne Paris Cité, UMR 7086ParisFrance

Personalised recommendations