Skip to main content

Design and Construction of a Wearable Tool for Fall-Risk Detection in Telerehabilitation

  • Chapter
  • First Online:
Book cover Telerehabilitation

Part of the book series: Health Informatics ((HI))

  • 1915 Accesses

Abstract

Telerehabilitation services represent a promising option for patients undergoing home-based rehabilitation as a result of stroke or other pathologies. To facilitate recovery following stroke, prompt and constant neural and motion rehabilitation is essential. When a patient returns home after treatment, he or she may experience a high degree of imbalance. It can be challenging to remotely assess fall-risk in the home. This chapter describes a promising new telerehabilitation-based approach to fall-risk detection via a wearable tool, integrated to a global system for mobile communication (GSM) net. The technology is based upon an inertial measurement unit and two medical protocols (i.e., a sit-to-stand clinical application and a posturography clinical application). The approach incorporates a 4-point fall-risk score: 1, no fall- risk to 4, major fall-risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aminian K, Robert P, Buscher EE, et al. Physical activity monitoring based on accelerometry: validation and comparison with video observation. Med Biol Eng Comput. 1999;37(3):304–8.

    Article  PubMed  CAS  Google Scholar 

  2. Available at: http://www.oposrl.it/pdf/molle_codivilla.pdf. Accessed Mar 2009.

  3. Available at: http://www.stroke.org/site/PageNavigator/HOME. Accessed Mar 2009.

  4. Busser HJ, Ott J, Uiterwaal M, et al. Ambulatory monitoring of children’s activities. Med Eng Phys. 1997;19:440–5.

    Article  PubMed  CAS  Google Scholar 

  5. Bussmann HB, Reuvekamp PJ, Veltink PH, et al. Validity and reliability of measurements obtained with an activity monitor in people with and without a transtibial amputation. Phys Ther. 1998;78(9):989–98.

    PubMed  CAS  Google Scholar 

  6. Bussmann JBJ, Tulen JHM, Van Herel ECG, et al. Quantification of physical activities by means of ambulatory accelerometry: a validation study. Psychophysiology. 1998;35:488–96.

    Article  PubMed  CAS  Google Scholar 

  7. Bussmann JB, Van de Laar YM, Neeleman MP, et al. Ambulatory accelerometry to quantify motor behaviour in patients after failed back surgery: a validation study. Pain. 1998;74(2–3):153–61.

    Article  PubMed  CAS  Google Scholar 

  8. Bussmann JBJ, Veltink PH, Koelma F, et al. Ambulatory monitoring of mobility-related activities: the initial phase of the development of an activity monitor. Eur J Phys Rehabil Med. 1995;5:2–7.

    Google Scholar 

  9. Dunne DM, Lyons GM, Grace PA. The feasibility of posture and physical movement detection using accelerometers. Ir J Med Sci. 2000;169:22.

    Article  Google Scholar 

  10. Fahrenberg J, Foerster F, Mueller W, et al. Assessment of posture and motion by multi-channel piezoresistive accelerometer recordings. Psychophysiology. 1997;34:607–12.

    Article  PubMed  CAS  Google Scholar 

  11. Fahrenberg J, Muller W, Foerster F, et al. A multi-channel investigation of physical activity. J Psychophysiol. 1996;10:209–17.

    Google Scholar 

  12. Foerster F, Fahrenberg J. Motion pattern and posture: correctly assessed by calibrated accelerometers. Behav Res Methods Instrum Comput. 2000;32:450–7.

    Article  PubMed  CAS  Google Scholar 

  13. Foerster F, Smeja M, Fahrenberg J. Detection of posture and motion by accelerometry: a validation study in ambulatory monitoring. Comput Hum Behav. 1999;15(5):571–83.

    Article  Google Scholar 

  14. Giansanti D. Investigation of fall-risk using a wearable device with accelerometers and rate gyroscopes. Physiol Meas. 2006;27:1081–90.

    Article  PubMed  Google Scholar 

  15. Giansanti D, Maccioni G. Comparison of three different kinematic sensor assemblies for locomotion study. Physiol Meas. 2005;26:689–705.

    Article  PubMed  Google Scholar 

  16. Giansanti D, Maccioni G, Cesinaro S, et al. Assessment of fall-risk by means of a neural network based on parameters assessed by a wearable device during posturography. Med Eng Phys. 2008;30:367–72.

    Article  PubMed  Google Scholar 

  17. Giansanti D, Maccioni G, Macellari V. The development and test of a device for the reconstruction of 3-D position and orientation by means of a kinematic sensor assembly with rate gyroscopes and accelerometers. IEEE Trans Biomed Eng. 2005;52:1271–7.

    Article  PubMed  Google Scholar 

  18. Giansanti D, Maccioni G, Macellari V, et al. Towards the investigation of kinematic parameters from an integrated measurement unit for the classification of the rising from the chair. Conf Proc IEEE Eng Med Biol Soc. 2006;1:1742–5.

    PubMed  Google Scholar 

  19. Giansanti D, Macellari V, Maccioni G. New neural network classifier of fall-risk based on the Mahalanobis distance and kinematic parameters assessed by a wearable device. Physiol Meas. 2008;29:N11–9.

    Article  PubMed  Google Scholar 

  20. Giansanti D, Macellari V, Maccioni G. Telemonitoring and telerehabilitation of patients with Parkinson’s disease: health technology assessment of a novel wearable step counter. Telemed J E Health. 2008;14:76–83.

    Article  PubMed  Google Scholar 

  21. Giansanti D, Morelli S, Dionisio P, et al. Design, construction and integration in instrumented walkways of a portable kit for the assessment of gait parameters in tele-rehabilitation. In: Cohn E, Kumar S, editors. Telerehabilitation. London: Springer; 2012.

    Google Scholar 

  22. Giansanti D, Morelli S, Maccioni G, et al. Toward the design of a wearable system for fall-risk detection in telerehabilitation. Telemed J E Health. 2009;15(3):296–9.

    Article  PubMed  Google Scholar 

  23. Giansanti D, Morelli S, Maccioni G, et al. Design and construction of a portable kit for the assessment of gait parameters in daily-rehabilitation. Rapporti ISTISAN 10/16, Istituto Superiore di Sanità, Roma; 2010.

    Google Scholar 

  24. Giansanti D, Tiberi Y, Maccioni G. Integration of motion sensor monitoring units in stroke gait telerehabilitation programs of continuity of care. Telemed J E Health. 2009;15:105–11.

    Article  PubMed  Google Scholar 

  25. Kandel ER, Schwart RJ, Jessell TM. Principi di neuroscienze. Milan, Italy: CEA; 2000.

    Google Scholar 

  26. Kiani K, Snijders CJ, Gelsema ES. Computerised analysis of daily life motor activity for ambulatory monitoring. Technol Health Care. 1997;5:307–18.

    PubMed  CAS  Google Scholar 

  27. Kiani K, Snijders CJ, Gelsema ES. Recognition of daily motor activity classes using an artificial neural network. Arch Phys Med Rehabil. 1998;79:147–54.

    Article  PubMed  CAS  Google Scholar 

  28. Lyons GM, Culhane KM, Hilton D, et al. A description of an accelerometer-based mobility monitoring technique. Med Eng Phys. 2005;27(6):497–504.

    Article  PubMed  CAS  Google Scholar 

  29. Uiterwaal M, Glerum EB, Busser HJ, et al. Ambulatory monitoring of physical activity in working situations, a validation study. J Med Eng Technol. 1998;22:168–72.

    Article  PubMed  CAS  Google Scholar 

  30. Van den Berg-Emons HJ, Bussmann JB, Balk AH, et al. Validity of ambulatory accelerometry to quantify physical activity in heart failure. Scand J Rehabil Med. 2000;32(4):187–92.

    Article  PubMed  Google Scholar 

  31. Veltink PH, Bussmann HBJ, de Vries W, et al. Detection of static and dynamic activities using uniaxial accelerometers. IEEE Trans Rehabil Eng. 1996;4:375–85.

    Article  PubMed  CAS  Google Scholar 

  32. Veltink PH, Bussmann HBJ, Koelma F, et al. The feasibility of posture and movement detection by accelerometry. In: Proceedings of the 15th annual international conference of the IEEE, engineering in medicine and biology society, San Diego, 1993. p. 1230–1.

    Google Scholar 

Download references

Acknowledgement

This work was funded by the Istituto Superiore di Sanità (The Italian NIH) in the 3-year long (2006–2008) program entitled “Design and Construction of Innovative Wearable Systems for the Monitoring of Kinematic Parameters.” No competing financial conflicts exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Giansanti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Giansanti, D., Dionisio, P., Maccioni, G. (2013). Design and Construction of a Wearable Tool for Fall-Risk Detection in Telerehabilitation. In: Kumar, S., Cohn, E. (eds) Telerehabilitation. Health Informatics. Springer, London. https://doi.org/10.1007/978-1-4471-4198-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4198-3_18

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4197-6

  • Online ISBN: 978-1-4471-4198-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics