Skip to main content

The Bone Marrow Microenvironment and Its Impact in Acute and Chronic B Cell Malignancies

  • Chapter
  • First Online:
Book cover Bone Marrow Lymphoid Infiltrates

Abstract

The bone marrow (BM) hosts normal hematopoiesis by providing the cellular and molecular environment necessary for hematopoietic stem cell maintenance, expansion, and differentiation into the various hematopoietic lineages. This highly organized factory requires cross talk between hematopoietic and stromal elements in distinct microanatomical sites (niches), promoting the expansion of normal hematopoietic elements and the deletion of defective and potentially harmful cells [1]. The neoplastic cells from patients with lymphoid malignancies take advantage of the BM microenvironment by parasitizing niches that normally are restricted to hematopoietic progenitors [2]. Interactions with the marrow microenvironment contribute to malignant B cell growth and drug resistance, leading to a gradual replacement of normal hematopoiesis. In lymphoid malignancies, the BM also is a common site for residual disease and relapses after conventional therapies [3]. Therefore, there is growing interest in understanding the biology of the BM microenvironment. Over the last two decades, there has been substantial progress in identifying key cellular and molecular players in cross talk between malignant lymphocytes and the marrow microenvironment. In this chapter, we will highlight established pathways and current therapeutic approaches to target the microenvironment in acute and chronic B cell malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell. 2008;132:598–611.

    Article  PubMed  CAS  Google Scholar 

  2. Burger JA, Ghia P, Rosenwald A, Caligaris-Cappio F. The microenvironment in mature B-cell malignancies: a target for new treatment strategies. Blood. 2009;114:3367–75.

    Article  PubMed  CAS  Google Scholar 

  3. Meads MB, Gatenby RA, Dalton WS. Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer. 2009;9:665–74.

    Article  PubMed  CAS  Google Scholar 

  4. Roberts R, Gallagher J, Spooncer E, Allen TD, Bloomfield F, Dexter TM. Heparan sulphate bound growth factors: a mechanism for stromal cell mediated haemopoiesis. Nature. 1988;332:376–8.

    Article  PubMed  CAS  Google Scholar 

  5. LeBien TW, Tedder TF. B lymphocytes: how they develop and function. Blood. 2008;112:1570–80.

    Article  PubMed  CAS  Google Scholar 

  6. Reed JC. Bcl-2-family proteins and hematologic malignancies: history and future prospects. Blood. 2008;111:3322–30.

    Article  PubMed  CAS  Google Scholar 

  7. Burger JA, Burkle A. The CXCR4 chemokine receptor in acute and chronic leukaemia: a marrow homing receptor and potential therapeutic target. Br J Haematol. 2007;137:288–96.

    Article  PubMed  CAS  Google Scholar 

  8. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466:829–34.

    Article  PubMed  CAS  Google Scholar 

  9. Nagasawa T. New niches for B cells. Nat Immunol. 2008;9:345–6.

    Article  PubMed  CAS  Google Scholar 

  10. Omatsu Y, Sugiyama T, Kohara H, Kondoh G, Fujii N, Kohno K, et al. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity. 2010;33:387–99.

    Article  PubMed  CAS  Google Scholar 

  11. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell. 2006;124:407–21.

    Article  PubMed  CAS  Google Scholar 

  12. Laird DJ, von Andrian UH, Wagers AJ. Stem cell trafficking in tissue development, growth, and disease. Cell. 2008;132:612–30.

    Article  PubMed  CAS  Google Scholar 

  13. Burger JA, Burger M, Kipps TJ. Chronic lymphocytic leukemia B cells express functional CXCR4 chemokine receptors that mediate spontaneous migration beneath bone marrow stromal cells. Blood. 1999;94:3658–67.

    PubMed  CAS  Google Scholar 

  14. Majid A, Lin TT, Best G, Fishlock K, Hewamana S, Pratt G, et al. CD49d is an independent prognostic marker that is associated with CXCR4 expression in CLL. Leuk Res. 2011;35:750–6. Epub 2010 Nov 18.

    Article  PubMed  CAS  Google Scholar 

  15. Gattei V, Bulian P, Del Principe MI, Zucchetto A, Maurillo L, Buccisano F, et al. Relevance of CD49d protein expression as overall survival and progressive disease prognosticator in chronic lymphocytic leukemia. Blood. 2008;111:865–73.

    Article  PubMed  CAS  Google Scholar 

  16. Shanafelt TD, Geyer SM, Bone ND, Tschumper RC, Witzig TE, Nowakowski GS, et al. CD49d expression is an independent predictor of overall survival in patients with chronic lymphocytic leukaemia: a prognostic parameter with therapeutic potential. Br J Haematol. 2008;140:537–46.

    Article  PubMed  CAS  Google Scholar 

  17. Eistere W, Hilbe W, Stauder R, Bechter O, Fend F, Thaler J. An aggressive subtype of B-CLL is characterized by strong CD44 expression and lack of CD11c. Br J Haematol. 1996;93:661–9.

    Article  PubMed  CAS  Google Scholar 

  18. Nagasawa T, Kikutani H, Kishimoto T. Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc Natl Acad Sci USA. 1994;91:2305–9.

    Article  PubMed  CAS  Google Scholar 

  19. Abram CL, Lowell CA. The ins and outs of leukocyte integrin signaling. Annu Rev Immunol. 2009;27:339–62.

    Article  PubMed  CAS  Google Scholar 

  20. Butcher EC, Picker LJ. Lymphocyte homing and homeostasis. Science. 1996;272:60–6.

    Article  PubMed  CAS  Google Scholar 

  21. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994;76:301–14.

    Article  PubMed  CAS  Google Scholar 

  22. Matsunaga T, Takemoto N, Sato T, Takimoto R, Tanaka I, Fujimi A, et al. Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat Med. 2003;9:1158–65.

    Article  PubMed  CAS  Google Scholar 

  23. Kurtova AV, Tamayo AT, Ford RJ, Burger JA. Mantle cell lymphoma cells express high levels of CXCR4, CXCR5, and VLA-4 (CD49d): importance for interactions with the stromal microenvironment and specific targeting. Blood. 2009;113:4604–13.

    Article  PubMed  CAS  Google Scholar 

  24. Mori Y, Shimizu N, Dallas M, Niewolna M, Story B, Williams PJ, et al. Anti-alpha4 integrin antibody suppresses the development of multiple myeloma and associated osteoclastic osteolysis. Blood. 2004;104:2149–54.

    Article  PubMed  CAS  Google Scholar 

  25. Spiegel A, Kollet O, Peled A, Abel L, Nagler A, Bielorai B. Unique SDF-1-induced activation of human precursor-B ALL cells as a result of altered CXCR4 expression and signaling. Blood. 2004;103:2900–7.

    Article  PubMed  CAS  Google Scholar 

  26. Sipkins DA, Wei X, Wu JW, Runnels JM, Côté D, Means TK, et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature. 2005;435:969–73.

    Article  PubMed  CAS  Google Scholar 

  27. Dias S, Hattori K, Zhu Z, Heissig B, Choy M, Lane W, et al. Inhibition of both paracrine and autocrine VEGF/VEGFR-2 signaling pathways is essential to induce long-term remission of xenotransplanted human leukemias. Proc Natl Acad Sci USA. 2001;98:10857–62.

    Article  PubMed  CAS  Google Scholar 

  28. Gilbert LA, Hemann MT. DNA damage-mediated induction of a chemoresistant niche. Cell. 2010;143:355–66.

    Article  PubMed  CAS  Google Scholar 

  29. Colmone A, Amorim M, Pontier AL, Wang S, Jablonski E, Sipkins DA. Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science. 2008;322:1861–5.

    Article  PubMed  CAS  Google Scholar 

  30. Burger JA, Kipps TJ. Chemokine receptors and stromal cells in the homing and homeostasis of chronic lymphocytic leukemia B cells. Leuk Lymphoma. 2002;43:461–6.

    Article  PubMed  CAS  Google Scholar 

  31. Meads MB, Hazlehurst LA, Dalton WS. The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin Cancer Res. 2008;14:2519–26.

    Article  PubMed  CAS  Google Scholar 

  32. Lagneaux L, Delforge A, Bron D, De Bruyn C, Stryckmans P. Chronic lymphocytic leukemic B cells but not normal B cells are rescued from apoptosis by contact with normal bone marrow stromal cells. Blood. 1998;91:2387–96.

    PubMed  CAS  Google Scholar 

  33. Burger JA, Tsukada N, Burger M, Zvaifler NJ, Dell’Aquila M, Kipps TJ. Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood. 2000;96:2655–63.

    PubMed  CAS  Google Scholar 

  34. Kurtova AV, Balakrishnan K, Chen R, Ding W, Schnabl S, Quiroga MP, et al. Diverse marrow stromal cells protect CLL cells from spontaneous and drug-induced apoptosis: development of a reliable and reproducible system to assess stromal cell adhesion-mediated drug resistance. Blood. 2009;114:4441–50.

    Article  PubMed  CAS  Google Scholar 

  35. Ghia P, Strola G, Granziero L, Geuna M, Guida G, Sallusto F. Chronic lymphocytic leukemia B cells are endowed with the capacity to attract CD4+, CD40L+ T cells by producing CCL22. Eur J Immunol. 2002;32:1403–13.

    Article  PubMed  CAS  Google Scholar 

  36. Ghia P, Granziero L, Chilosi M, Caligaris-Cappio F. Chronic B cell malignancies and bone marrow microenvironment. Semin Cancer Biol. 2002;12:149–55.

    Article  PubMed  Google Scholar 

  37. Kuppers R. Prognosis in follicular lymphoma – it’s in the microenvironment. N Engl J Med. 2004;351:2152–3.

    Article  PubMed  Google Scholar 

  38. Ame-Thomas P, Maby-El Hajjami H, Monvoisin C, Jean R, Monnier D, Caulet-Maugendre S, et al. Human mesenchymal stem cells isolated from bone marrow and lymphoid organs support tumor B-cell growth: role of stromal cells in follicular lymphoma pathogenesis. Blood. 2007;109:693–702.

    Article  PubMed  CAS  Google Scholar 

  39. Zipori D. The hemopoietic stem cell niche versus the microenvironment of the multiple myeloma-tumor initiating cell. Cancer Microenviron. 2010;3:15–28.

    Article  PubMed  CAS  Google Scholar 

  40. Raab MS, Podar K, Breitkreutz I, Richardson PG, Anderson KC. Multiple myeloma. Lancet. 2009;374:324–39.

    Article  PubMed  Google Scholar 

  41. Chauhan D, Uchiyama H, Akbarali Y, Urashima M, Yamamoto K, Libermann TA, et al. Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood. 1996;87:1104–12.

    PubMed  CAS  Google Scholar 

  42. Hargreaves DC, Hyman PL, Lu TT, Ngo VN, Bidgol A, Suzuki G, et al. A coordinated change in chemokine responsiveness guides plasma cell movements. J Exp Med. 2001;194:45–56.

    Article  PubMed  CAS  Google Scholar 

  43. Alsayed Y, Ngo H, Runnels J, Leleu X, Singha UK, Pitsillides CM, et al. Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood. 2007;109:2708–17.

    PubMed  CAS  Google Scholar 

  44. Nagasawa T. Microenvironmental niches in the bone marrow required for B-cell development. Nat Rev Immunol. 2006;6:107–16.

    Article  PubMed  CAS  Google Scholar 

  45. Ma Q, Jones D, Springer TA. The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity. 1999;10:463–71.

    Article  PubMed  CAS  Google Scholar 

  46. Manabe A, Coustan-Smith E, Behm FG, Raimondi SC, Campana D. Bone marrow-derived stromal cells prevent apoptotic cell death in B-lineage acute lymphoblastic leukemia. Blood. 1992;79:2370–7.

    PubMed  CAS  Google Scholar 

  47. Shah N, Oseth L, LeBien TW. Development of a model for evaluating the interaction between human pre- B acute lymphoblastic leukemic cells and the bone marrow stromal cell microenvironment. Blood. 1998;92:3817–28.

    PubMed  CAS  Google Scholar 

  48. Iwamoto S, Mihara K, Downing JR, Pui CH, Campana D. Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest. 2007;117:1049–57.

    Article  PubMed  CAS  Google Scholar 

  49. Burger JA, Zvaifler NJ, Tsukada N, Firestein GS, Kipps TJ. Fibroblast-like synoviocytes support B-cell pseudoemperipolesis via a stromal cell-derived factor-1- and CD106 (VCAM-1)-dependent mechanism. J Clin Invest. 2001;107:305–15.

    Article  PubMed  CAS  Google Scholar 

  50. Bradstock KF, Makrynikola V, Bianchi A, Shen W, Hewson J, Gottlieb DJ. Effects of the chemokine stromal cell-derived factor-1 on the migration and localization of precursor-B acute lymphoblastic leukemia cells within bone marrow stromal layers. Leukemia. 2000;14:882–8.

    Article  PubMed  CAS  Google Scholar 

  51. Williams DA. A new mechanism of leukemia drug resistance? N Engl J Med. 2007;357:77–8.

    Article  PubMed  CAS  Google Scholar 

  52. Burger M, Hartmann T, Krome M, Rawluk J, Tamamura H, Fujii N, et al. Small peptide inhibitors of the CXCR4 chemokine receptor (CD184) antagonize the activation, migration, and antiapoptotic responses of CXCL12 in chronic lymphocytic leukemia B cells. Blood. 2005;106:1824–30.

    Article  PubMed  CAS  Google Scholar 

  53. Andritsos L, Byrd JC, Jones JA, Becker H, Kipps TJ, Hsu FJ, et al. Preliminary results from a phase I dose escalation study to determine the maximum tolerated dose of plerixafor in combination with rituximab in patients with relapsed chronic lymphocytic leukemia. Blood. 2010;116:1017a.

    Google Scholar 

  54. Spaargaren M, Beuling EA, Rurup ML, Meijer HP, Klok MD, Middendorp S, et al. The B cell antigen receptor controls integrin activity through Btk and PLCgamma2. J Exp Med. 2003;198:1539–50.

    Article  PubMed  CAS  Google Scholar 

  55. Friedberg JW, Sharman J, Sweetenham J, Johnston PB, Vose JM, Lacasce A, et al. Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood. 2010;115:2578–85.

    Article  PubMed  CAS  Google Scholar 

  56. Burger JA, O’Brien S, Fowler N, Advani R, Sharman JP, Furman RR, et al. The Bruton’s tyrosine kinase inhibitor, PCI-32765, is well tolerated and demonstrates promising clinical activity in chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL): an update on ongoing phase 1 studies. Blood. 2010;116:32a.

    Article  Google Scholar 

  57. Furman RR, Byrd JC, Brown JR, Coutre SE, Benson DM, Wagner-Johnston ND, et al. CAL-101, an isoform-selective inhibitor of phosphatidylinositol 3-kinase P110{delta}. demonstrates clinical activity and pharmacodynamic effects in patients with relapsed or refractory chronic lymphocytic leukemia. Blood. 2010;116:31a.

    Google Scholar 

  58. Honigberg LA, Smith AM, Sirisawad M, Verner E, Loury D, Chang B, et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci USA. 2010;107:13075–80.

    Article  PubMed  CAS  Google Scholar 

  59. Lannutti BJ, Meadows SA, Herman SE, Kashishian A, Steiner B, Johnson A, et al. CAL-101, a p110{delta} selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood. 2011;117:591–4.

    Article  PubMed  CAS  Google Scholar 

  60. de Gorter DJ, Beuling EA, Kersseboom R, Middendorp S, van Gils JM, Hendriks RW, et al. Bruton’s tyrosine kinase and phospholipase Cgamma2 mediate chemokine-controlled B cell migration and homing. Immunity. 2007;26:93–104.

    Article  PubMed  Google Scholar 

  61. Quiroga MP, Balakrishnan K, Kurtova AV, Sivina M, Keating MJ, Wierda WG. B-cell antigen receptor signaling enhances chronic lymphocytic leukemia cell migration and survival: specific targeting with a novel spleen tyrosine kinase inhibitor, R406. Blood. 2009;114:1029–37.

    Article  PubMed  CAS  Google Scholar 

  62. Niedermeier M, Hennessy BT, Knight ZA, Henneberg M, Hu J, Kurtova AV, et al. Isoform-selective phosphoinositide 3′-kinase inhibitors inhibit CXCR4 signaling and overcome stromal cell-mediated drug resistance in chronic lymphocytic leukemia: a novel therapeutic approach. Blood. 2009;113:5549–57.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a CLL Global Research Foundation grant and a Cancer Prevention and Research Institute of Texas (CPRIT) grant (to J.A.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan A. Burger M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Burger, J.A., Sipkins, D.A. (2012). The Bone Marrow Microenvironment and Its Impact in Acute and Chronic B Cell Malignancies. In: Anagnostou, D., Matutes, E. (eds) Bone Marrow Lymphoid Infiltrates. Springer, London. https://doi.org/10.1007/978-1-4471-4174-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4174-7_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4173-0

  • Online ISBN: 978-1-4471-4174-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics