Bone Marrow Involvement in Primary Mature B and T Cell Leukemias

  • Ayoma D. Attygalle
  • Estella Matutes


Mature B and T cell neoplasms evolving with a leukaemic picture often, if not always, involve the bone marrow (BM). In routine practice, BM assessment in these conditions is, as a rule, indicated. Unlike in B and T cell lymphomas (nodal or tissue based), the BM in mature lymphoid leukaemias does not provide relevant information on staging. However, its evaluation is helpful to: (i) establish and/or confirm a suspected diagnosis, (ii) estimate the haemopoietic reserve, (iii) document relapse and, (iv) assess the response and quality of response following treatment.


Chronic Lymphocytic Leukemia Bone Marrow Biopsy Ataxia Telangiectasia Mutate Hairy Cell Leukemia Large Granular Lymphocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Yullie MR, Matutes E, Marossy A, Hilditch B, Catovsky D, Houlston RS. Familial chronic lymphocytic leukeamia: a survey and review of published studies. Br J Haematol. 2000;109:794–9.CrossRefGoogle Scholar
  2. 2.
    Shanafelt TD, Ghia P, Lanasa MC, Landgren O, Rawstron AC. Monoclonal B-cell lymphocytosis (MBL): biology, natural history and clinical management. Leukemia. 2010;24:512–20.PubMedCrossRefGoogle Scholar
  3. 3.
    Rossi D, Sozzi E, Puma A, De Paoli L, Rasi S, Spina V, et al. The prognosis of clinical monoclonal B cell lymphocytosis differs from prognosis of Rai 0 chronic lymphocytic leukaemia and is recapituled by biological risk factors. Br J Haematol. 2009;146:64–75.PubMedCrossRefGoogle Scholar
  4. 4.
    Shanafelt TD, Ghia MC, Landgren O, Rawstron AC. Monoclonal B-cell lymphocytosis (MBL): biology, natural history and clinical manegement. Leukemia. 2010;24:512–20.PubMedCrossRefGoogle Scholar
  5. 5.
    Halleck M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the international workshop on chronic lymphocytic leukemia updatig the national cancer Institute working group 1996 guidelines. Blood. 2008;111:5446–56.CrossRefGoogle Scholar
  6. 6.
    Matutes E, Polliack A. Morphological and immunophenotypic features of chronic lymphocytic leukaemia. Rev Clin Exp Hematol. 2000;4:22–47.PubMedCrossRefGoogle Scholar
  7. 7.
    Matutes E, Owusu-Ankomah K, Morilla R, Garcia Marco J, Houlihan A, Que TH, et al. The immunological profile of B-cell disorders and proposal of a scoring system for the diagnosis of CLL. Leukemia. 1994;8:1640–5.PubMedGoogle Scholar
  8. 8.
    Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343:1910–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Oscier D, Wade R, Davies Z, Morilla A, Best G, Ricahrds S, et al. Prognostic factors identify 3 risk groups in the LRF CLL 4 trial independent of treatment allocation. Haematologica. 2010;95:1705–12.PubMedCrossRefGoogle Scholar
  10. 10.
    Bertlaccio MT, Scielzo C, Muzio M, Caligaris-Cappio F. An overview of chronic lymphocytic leukaemia biology. Best Pract Res Clin Haematol. 2010;23:21–32.CrossRefGoogle Scholar
  11. 11.
    Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL, et al. Immunoglobulin V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood. 1999;94:1840–7.PubMedGoogle Scholar
  12. 12.
    Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated IgV(H) genes are associated with a more agressive form of chronic lymphocytic leukaemia. Blood. 1999;94:1848–54.PubMedGoogle Scholar
  13. 13.
    Klein U. Cellular origin of chronic lymphocytic leukemia. Haematol Educ. 2009;3:55–60.Google Scholar
  14. 14.
    Klein U, Tu Y, Stolovitzky GA, Mattioli M, Catoretti G, Husson H, et al. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J Exp Med. 2001;194:1639–47.CrossRefGoogle Scholar
  15. 15.
    Stamatopoulos K. CLL: promiscuity leads to risks. Blood. 2009;114:3508–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Stamatopoulos K, Belessi C, Moreno C, Boudjograh M, Guida G, Smilevska T, et al. Over 20 % of patients with chronic lymphocytic leukemia carry stereotyped receptors: pathogenic implications and clinical correlations. Blood. 2007;109:259–70.PubMedCrossRefGoogle Scholar
  17. 17.
    Matutes E, Attygalle A, Wotherspoon A, Catovsky D. Diagnostic issues in chronic lymphocytic leukaemia. Best Pract Res Clin Haematol. 2010;23:1–18.CrossRefGoogle Scholar
  18. 18.
    Mao Z, Quintanilla-Martinez L, Raffeld M, Richter M, Krugmann J, Burek C, et al. IgVH mutational status and clonality analysis of Richter’s transformation: diffuse large B-cell lymphoma and Hodgkin lymphoma in association with B-cell chronic lymphocytic leukemia (B-CLL) represent 2 different pathways of disease evolution. Am J Surg Pathol. 2007;31(10):1605–14.PubMedCrossRefGoogle Scholar
  19. 19.
    Rossi D, Gaidano G. Richter syndrome: molecular insights and clinical perspectives. Hematol Oncol. 2009;27(1):1–10.PubMedCrossRefGoogle Scholar
  20. 20.
    Martin P, Attygalle A, Swansbury J, Min T, Morilla A, Hockley SL, et al. p53 protein overexpression in bone marrow biopsies from chronic lymphocytic leukaemia is associated with TP53 deletion and resistance to fludarabine. J Hematopathol. 2010;3:61–8.CrossRefGoogle Scholar
  21. 21.
    Foucar K, Falini B, Catovsky D, Stein H. Hairy cell leukaemia. Chap. 10: In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: International Agency for Research on Cancer (IARC); 2008. p. 188–90.Google Scholar
  22. 22.
    Golomb HM. Hairy cell leukaemia. Treatment successes in the past 25 years. J Clin Oncol. 2008;26:2607–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Grever MR, Lozanski G. Modern strategies for hairy cell leukemia. J Clin Oncol. 2011;29:583–90.PubMedCrossRefGoogle Scholar
  24. 24.
    Matutes E. Immunophenotyping and differential diagnosis of hairy cell leukemia. Hematol Oncol Clin North Am. 2006;20:1051–63.PubMedCrossRefGoogle Scholar
  25. 25.
    Tiacci E, Trifonov V, Schiavoni G, Holmes A, Kern W, Martelli MP, et al. BRAF mutations in hairy-cell leukemia. N Engl J Med. 2011;364:2305–15.PubMedCrossRefGoogle Scholar
  26. 26.
    Hockley SL, Giannouli S, Morilla A, Wotherspoon A, Morgan GJ, Matutes E, et al. Insight into the molecular pathogenesis of hairy cell leukaemia, hairy cell leukaemia variant and splenic marginal zone lymphoma provided by the analysis of their IGH rearrangements and somatic hypermutation patterns. Br J Haematol. 2010;148:666–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Burke JS. The value of the bone-marrow biopsy in the diagnosis of hairy cell leukemia. Am J Clin Pathol. 1978;70:876–84.PubMedGoogle Scholar
  28. 28.
    Sharpe RW, Bethel KJ. Hairy cell leukemia: diagnostic pathology. Hematol Oncol Clin North Am. 2006;20:1023–49.PubMedCrossRefGoogle Scholar
  29. 29.
    Falini B, Tiacci E, Liso A, Basso K, Sabattini E, Pacini R, et al. Simple diagnostic assay for hairy cell leukaemia by immunocytochemical detection of annexin A1 (ANXA1). Lancet. 2004;363:1869–70.PubMedCrossRefGoogle Scholar
  30. 30.
    Piris M, Foucar K, Mollejo M, Campo E, Falini B. Splenic lymphoma/leukaemia, unclassifiable. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: International Agency for Research on Cancer (IARC); 2008. p. 191–3.Google Scholar
  31. 31.
    Matutes E, Wotherspoon A, Catovsky D. The variant form of hairy cell leukaemia. Best Pract Res Clin Haematol. 2003;16:41–56.PubMedCrossRefGoogle Scholar
  32. 32.
    Matutes E, Wotherspoon A, Brito-Babapulle V, Catovsky D. The natural history and clinico-pathological features of the variant form of hairy cell leukemia. Leukemia. 2001;15:184–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Robak T. Hairy cell leukemia variant: recent view on diagnosis, biology and treatment. Cancer Treat Rev. 2011;37:3–10.PubMedCrossRefGoogle Scholar
  34. 34.
    Hockley S, Morgan GJ, Leone PE, Walker BA, Morilla A, Else M, et al. High-resolution genomic profiling in hairy cell leukemia-variant compared with typical hairy cell leukemia. Leukemia. 2011;25:1189–92.PubMedCrossRefGoogle Scholar
  35. 35.
    Cessna MH, Hartung L, Tripp S, Perkins SL, Bahler DW. Hairy cell leukemia variant: fact or fiction. Am J Clin Pathol. 2005;123:132–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Ya-In C, Brandwein J, Pantalony D, Chang H. Hairy cell leukemia variant with features of intrasinusoidal bone marrow involvement. Arch Pathol Lab Med. 2005;129(3):395–8.PubMedGoogle Scholar
  37. 37.
    Matutes E, Brito-Babapulle V, Swansbury J, Ellis J, Morilla R, Dearden C, et al. Clinical and laboratory features of 78 cases of T-prolymphocytic leukemia. Blood. 1991;78:3269–74.PubMedGoogle Scholar
  38. 38.
    Dearden CED, Matutes E, Cazin B, Tjonnfjord GE, Parreira A, Nomdedeu B, et al. High remission rate in T-cell prolyphocytic leukemia with Campath-1H. Blood. 2001;98:1721–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Herling M, Teitell MA, Konopleva M, Ravandi F, Kobayashi R, Jones D. High TCL1 expression and intact T-cell receptor signaling define a hyperproliferative subset of T-cell prolymphocytic leukemia. Blood. 2008;111:328–37.PubMedCrossRefGoogle Scholar
  40. 40.
    Catovsky D, Müller-Hemerlink HK, Ralfkiaer E. T-cell prolymphocytic leukaemia. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. International Agency for Research on Cancer (IARC): Lyon; 2008. p. 270–1.Google Scholar
  41. 41.
    Bradshaw PS, Condie A, Matutes E, Catovsky D, Yuille MR. Breakpoints in the ataxia telangiectasia gene arise at the RGYW somatic hypermutation motif. Oncogene. 2002;21:483–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Durig J, Bug S, Klein-Hitpass L, Boes T, Jons T, Martin-Subero JI, et al. Combined single nucleotide polymorphism-based genomic mapping and global gene expression profiling identifies novel chromosome imbalances, mechanisms and candidate genes important in the pathogenesis of T-cell prolymphocytic leukemia with inv(14)(q11; q32). Leukemia. 2007;21:2153–63.PubMedCrossRefGoogle Scholar
  43. 43.
    Nieto LH, Lampert IA, Catovsky D. Bone marrow histological patterns in B-cell and T-cell prolymphocytic leukemia. Hematol Pathol. 1989;3:79–84.PubMedGoogle Scholar
  44. 44.
    Dogan A, Morice WG. Bone marrow histopathology in peripheral T-cell lymphomas. Br J Haematol. 2004;127:140–54.PubMedCrossRefGoogle Scholar
  45. 45.
    Sokol L, Loughran Jr TP. Large granular lymphocyte leukemia. Oncologist. 2006;11:263–73.PubMedCrossRefGoogle Scholar
  46. 46.
    Alekshum TJ, Sokol L. Diseases of large granular lymphocytes. Cancer Control. 2007;14:141–50.Google Scholar
  47. 47.
    Matutes E. Immunological and clinical features of T-cell LGL disorders. In: Hematology education: the education programme for the annual congress of the European hematology association. Berlin; 2009, vol. 3, p. 302–307.Google Scholar
  48. 48.
    Lima M, Almeida J, Dos Anjos Teixeira M, Alguero MC, Santos AH, Balanzategui A, et al. TCRalphabeta+/CD4+ large granular lymphocytosis: a new clonal T-cell lymphoproliferative disorder. Am J Pathol. 2003;163:763–71.PubMedCrossRefGoogle Scholar
  49. 49.
    Garrido P, Ruiz-Cabello F, Barcena P, Sandberg Y, Canton J, Lima M, et al. Monoclonal TCR-Vbeta 13.1+/CD4+/NKa+/CD8−/dim T-LGL lymphocytosis: evidence for an antigen-driven chronic T-cell stimulation origin. Blood. 2007;109:4890–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Morice WG, Kurtin PJ, Tefferi A, Hanson CA. Distinct bone marrow findings in T-cell granular lymphocytic leukemia revealed by paraffin section immunoperoxidase stains for CD8, TIA-1, and granzyme B. Blood. 2002;99:268–74.PubMedCrossRefGoogle Scholar
  51. 51.
    Yang J, Epling-Burnette PK, Painter JS, Zou J, Bai F, Wei S, et al. Antigen activation and impaired Fas-induced death-inducing signalling complex formation in T-large granular lymphocyte leukemia. Blood. 2008;111:1610–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Shah MV, Zhang R, Irby R, Kothapalli R, Liu X, Arrington T, et al. Molecular profiling of LGL leukemia reveals role of sphingolipid signalling in survival of cytotoxic lymphocytes. Blood. 2008;112:770–81.PubMedCrossRefGoogle Scholar
  53. 53.
    Osuji N, Beiske K, Randen U, Matutes E, Tjonnfjord G, Catovsky D, et al. Characteristic appearances of the bone marrow in T-cell large granular lymphocyte leukaemia. Histopathology. 2007;50(5):547–54.PubMedCrossRefGoogle Scholar
  54. 54.
    Semenzato G, Zambello R, Starkebaum G, Oshimi K, Loughran Jr TP. The lymphoproliferative disease of granular lymphocytes: updated criteria for diagnosis. Blood. 1997;89:256–60.PubMedGoogle Scholar
  55. 55.
    Morice WG, Kurtin PJ, Leibson PJ, Tefferi A, Hanson CA. Demonstration of aberrant T-cell and natural killer-cell antigen expression in all cases of granular lymphocytic leukaemia. Br J Haematol. 2003;120(6):1026–36.PubMedCrossRefGoogle Scholar
  56. 56.
    Morice WG, Jevremovic D, Hanson CA. The expression of the novel cytotoxic protein granzyme M by large granular lymphocytic leukaemias of both T-cell and NK-cell lineage: an unexpected finding with implications regarding the pathobiology of these disorders. Br J Haematol. 2007;137:237–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  1. 1.Department of HistopathologyRoyal Marsden HospitalLondonUK
  2. 2.Department of PathologyRoyal Marsden HospitalLondonUK
  3. 3.Department of Haemato-OncologyRoyal Marsden HospitalLondonUK
  4. 4.Institute of Cancer ResearchLondonUK
  5. 5.The Royal Marsden NHS Foundation TrustLondonUK

Personalised recommendations