Skip to main content

Pluripotent Stem Cells of the Mammalian Early Embryo

  • Chapter
  • First Online:
Human Fetal Tissue Transplantation

Abstract

The early embryo harbors the most amazing cells, the embryonic stem (ES) cells, pluripotent cells capable of generating all the tissues and cell types of a mature animal. Discovery and establishment of culture techniques able to maintain in culture human embryonic stem cells revolutionized the scientific community about a decade ago. In addition to ES cells, other lesser-known stem cells have their niche in the early embryo, such as trophoblast stem cells, and at later stages, epiblast stem cells and embryonic germ cells. This chapter will discuss current knowledge of these cell types, the results of their use in preclinical studies using animal models, and current cell therapies for human disease treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aflatoonian B, Moore H. Human primordial germ cells and embryonic germ cells, and their use in cell therapy. Curr Opin Biotechnol. 2005;16:530–5.

    Article  PubMed  CAS  Google Scholar 

  2. Aharonowiz M, Einstein O, Fainstein N, et al. Neuroprotective effect of transplanted human embryonic stem cell-derived neural precursors in an animal model of multiple sclerosis. PLoS One. 2008;3(9):e3145.

    Article  PubMed  CAS  Google Scholar 

  3. Allen BL, Filla MS, Rapraeger AC. Role of heparan sulfate as tissue-specific regulator of FGF-4 and FGF receptor recognition. J Cell Biol. 2001;155:845–58.

    Article  PubMed  CAS  Google Scholar 

  4. Andrews P, Nagy A, Raya A, et al. Stem cells in biology and disease. International symposium organized by the ESTOOLS consortium, Lisbon, 26–28 mayo 2010.

    Google Scholar 

  5. Barak Y, Nelson MC, Ong ES, et al. PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell. 1999;4:585–95.

    Article  PubMed  CAS  Google Scholar 

  6. Bongso A, Fong CY, Gauthaman K. Taking stem cells to the clinic: major challenges. J Cell Biochem. 2008;105:1352–60.

    Article  PubMed  CAS  Google Scholar 

  7. Brons IG, Smithers LE, Trotter MW, et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature. 2007;448:191–5.

    Article  PubMed  CAS  Google Scholar 

  8. Brüstle O, Jones KN, Learish RD, et al. Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science. 1999;285:754–6.

    Article  PubMed  Google Scholar 

  9. de Sousa C, Lopes SM, Hatashi K, Shovlin TC, et al. X chromosome activity in mouse XX germ cells. PLoS Genet. 2008;4:e30.

    Article  Google Scholar 

  10. Chen, W, et al. Nature. Advance online publication: http://dx.doi.org/10:1038/nature11415.

    Article  PubMed  CAS  Google Scholar 

  11. Clark GO, Yochem RL, Axelman J, et al. Glucose responsive insulin production from human embryonic germ (EG) cell derivates. Biochem Biophys Res Commun. 2007;356(3):587–93.

    Article  PubMed  CAS  Google Scholar 

  12. Cross JC. Genetic insights into trophoblast differentiation and placental morphogenesis. Semin Cell Dev Biol. 2000;11:105–13.

    Article  PubMed  CAS  Google Scholar 

  13. Cui YF, Hargus G, Xu CH, et al. Embryonic stem cell-derived L1 overexpressing neural aggregates enhance recovery in Parkinsonian mice. Brain. 2010;133:189–204.

    Article  PubMed  Google Scholar 

  14. De Felici M, Farini D, Dolci S. In or out stemness: comparing growth factor signaling in mouse embryonic and primordial germ cells. Curr Stem Cell Res Ther. 2009;4:87–97.

    Article  PubMed  Google Scholar 

  15. De Miguel MP, Donovan PJ. Isolation and culture of mouse germ cells. Methods in molecular biology. vol. 137. In: Tuan RS, Lo CW, editors. Developmental biology protocols, vol. III. Totowa: Humana Press Inc. 38:403–8.

    Google Scholar 

  16. De Miguel MP, Cheng L, Holland EC, et al. Dissection of the KIT signaling pathway in mouse primordial germ cells by retroviral-mediated gene transfer. Proc Natl Acad Sci USA. 2002;99:10458–63.

    Article  PubMed  CAS  Google Scholar 

  17. Donovan PJ, De Miguel MP. Turning germ cells into stem cells. Curr Opin Genet Dev. 2003;13:463–71.

    Article  PubMed  CAS  Google Scholar 

  18. Donovan PJ, Stott D, Cairns LA, et al. Migratory and postmigratory mouse primordial germ cells behave differently in culture. Cell. 1986;44:831–8.

    Article  PubMed  CAS  Google Scholar 

  19. Durcova-Hills G, Adams IR, Barton SC, et al. The role of exogenous fibroblast growth factor-2 on the reprogramming of primordial germ cells into pluripotent stem cells. Stem Cells. 2006;24:1441–9.

    Article  PubMed  CAS  Google Scholar 

  20. Durcova-Hills G, Tang F, Doody G, et al. Reprogramming primordial germ cells into pluripotent stem cells. PLoS One. 2008;3:e3531.

    Article  PubMed  CAS  Google Scholar 

  21. Edwards YJ, Bryson K, Jones DT. A meta-analysis of microarray gene expression in mouse stem cells: redefining stemness. PLoS One. 2008;3(7):e2712.

    Article  PubMed  CAS  Google Scholar 

  22. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154–6.

    Article  PubMed  CAS  Google Scholar 

  23. Ezashi T, Telugu BP, Alexenko AP, et al. Derivation of induced pluripotent stem cells from pig somatic cells. Proc Natl Acad Sci USA. 2009;106:10993–8.

    Article  PubMed  CAS  Google Scholar 

  24. Feldman B, Poueymirou W, Papaioannou VE, et al. Requirement of FGF-4 for postimplantation mouse development. Science. 1995;267:246–9.

    Article  PubMed  CAS  Google Scholar 

  25. Finch BW, Ephrussi B. Retention of multiple developmental potentialities by cells of a mouse testicular teratocarcinoma during prolonged culture in vitro and their extinction upon hybridation with cells of permanent lines. Proc Natl Acad Sci USA. 1967;57:615–21.

    Article  PubMed  CAS  Google Scholar 

  26. Frimberger D, Morales N, Shamblott M, et al. Human embryonic body-derived stem cells in bladder regeneration using rodent model. Urology. 2005;65:827–32.

    Article  PubMed  Google Scholar 

  27. Furth ME, Atala A. Stem cell sources to treat diabetes. J Cell Biochem. 2009;106:507–11.

    Article  PubMed  CAS  Google Scholar 

  28. Geijsen N, Horoschak M, Kim K, et al. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature. 2004;427:148–54.

    Article  PubMed  CAS  Google Scholar 

  29. Ginsburg M, Snow MHL, Mclaren A. Primordial germ cells in the mouse embryo during gastrulation. Development. 1990;110:521–9.

    PubMed  CAS  Google Scholar 

  30. Greber B, Wu G, Bernemann C, et al. Conserved and divergent roles of FGF signaling in mouse epiblast stem cells and human embryonic stem cells. Cell Stem Cell. 2010;6:215–26.

    Article  PubMed  CAS  Google Scholar 

  31. Guillemot F, Nagy A, Auerbach A, et al. Essential role of Mash-2 in extraembryonic development. Nature. 1994;371:333–6.

    Article  PubMed  CAS  Google Scholar 

  32. Hanley NA, Hagan DM, Clement-Jones M, et al. SRY, SOX9 and DAX1 expression patterns during human sex determination and gonadal development. Mech Dev. 2000;91:403–7.

    Article  PubMed  CAS  Google Scholar 

  33. Hanna J, Cheng AW, Saha K, et al. Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc Natl Acad Sci USA. 2010;107(20):9222–7.

    Article  PubMed  CAS  Google Scholar 

  34. Hay DC, Sutherland L, Clark J, et al. Oct-4 Knock-down induces similar patterns of endoderm and trophoblast differentiation markers in human and mouse embryonic stem cells. Stem Cells. 2004;22:225–35.

    Article  PubMed  CAS  Google Scholar 

  35. Hayashi K, Surani A. Self-renewing epiblast stem cell exhibit continual delineation of germ cells with epigenetic reprograming in vitro. Development. 2009;136:3549–56.

    Article  PubMed  CAS  Google Scholar 

  36. Hayashi K, Surani A. Resetting the epigenome beyond pluripotency in the germline. Cell Stem Cell. 2009;4:493–8.

    Article  PubMed  CAS  Google Scholar 

  37. Hillel AT, Varghese S, Petsche J, et al. Embryonic germ cells are capable of adipogenic differentiation in vitro and in vivo. Tissue Eng Part A. 2009;15(3):479–86.

    Article  PubMed  CAS  Google Scholar 

  38. Hubner K, Fuhrmann G, Christenson L, et al. Derivation of oocytes from mouse embryonic stem cells. Science. 2003;300:1251–6.

    Article  PubMed  CAS  Google Scholar 

  39. Hughes M, Dobric N, Scott IC, et al. The Hand1, Stra13 and Gcm1 transcription factors override FGF signaling to promote terminal differentiation of trophoblast stem cells. Dev Biol. 2004;271:26–37.

    Article  PubMed  CAS  Google Scholar 

  40. Karussis D, Kassis I. The potencial use of stem cells in multiple sclerosis: an overview of the preclinical experience. Clin Neurol Neurosurg. 2009;110:889–96.

    Article  Google Scholar 

  41. Keirstead HS, Nistor G, Bernal G, et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci. 2005;25(19):4694–705.

    Article  PubMed  CAS  Google Scholar 

  42. Kerr DA, Lladó J, Samblott MJ, et al. Human embryonic germ cells derivatives facilitate motor recovery of rats with diffuse motor neuron injury. J Neurosci. 2003;23(12):5131–40.

    PubMed  CAS  Google Scholar 

  43. Kim CF, Jackson EL, Woolfenden AE, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell. 2005;121:823–35.

    Article  PubMed  CAS  Google Scholar 

  44. Kim JH, et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature. 2002;418:50–6.

    Article  PubMed  CAS  Google Scholar 

  45. King FW, Ritner C, Liszewski W, Kwan HC, Pedersen A, Leavitt AD, Bernstein HS. Subpopulations of human embryonic stem cells with distinct tissue-specific fates can be selected from pluripotent cultures. Stem Cells Dev. 2009;18(10):1441–50.

    Article  PubMed  CAS  Google Scholar 

  46. Korf-Klingebiel M, Kempf T, Sauer T, et al. Bone marrow cells are a rich source of growth factors and cytokines: implications for cell therapy trials after myocardial infarction. Eur Heart J. 2008;29:2851–8.

    Article  PubMed  Google Scholar 

  47. Kroon E, Martinson LA, Kadoya K, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008;26:443–52.

    Article  PubMed  CAS  Google Scholar 

  48. Lengner CJ, Gimelbrant AA, Erwin JA, et al. Derivation of pre-X inactivation human embryonic stem cells under physiological oxygen concentrations. Cell. 2010;141(5):872–83.

    Article  PubMed  CAS  Google Scholar 

  49. Leor J, Gerecht S, Cohen S, et al. Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart. 2007;93:1278–84.

    Article  PubMed  Google Scholar 

  50. Lindvall O, Kokaia Z. Stem cells in human neurodegenerative disorders-time for clinical translation? J Clin Invest. 2010;120(1):29–40.

    Article  PubMed  CAS  Google Scholar 

  51. Lindvall O, Kokaia Z. Prospects of stem cells therapy for replacing dopamine neurons in Parkinson’s disease. Trends Pharmacol Sci. 2009;30:260–7.

    Article  PubMed  CAS  Google Scholar 

  52. Liu S, Liu H, Pan Y, et al. Human embryonic germ cells isolation from early stages of post-implantation embryos. Cell Tissue Res. 2004;318:525–31.

    Article  PubMed  Google Scholar 

  53. Lu B, Malcuit C, Wang S, Girman S, Francis P, Lemieux L, Lanza R, Lund R. Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells. 2009;27:2126–35.

    Article  PubMed  CAS  Google Scholar 

  54. McConnell J, Petrie L, Stennard F, et al. Eomesodermin is expressed in mouse oocytes and preimplantation embryos. Mol Reprod Dev. 2005;71:399–404.

    Article  PubMed  CAS  Google Scholar 

  55. McDonald JW, et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med. 1999;5:1410–2.

    Article  PubMed  CAS  Google Scholar 

  56. McLaren A. Primordial germ cells in the mouse. Dev Biol. 2003;262:1–15.

    Article  PubMed  CAS  Google Scholar 

  57. Menasché P, Hagège AA, Vilquin JT, et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol. 2003;41:1078–83.

    Article  PubMed  Google Scholar 

  58. Mueller D, Shamblott MJ, Fox HE, et al. Transplanted human embryonic germ cell-derived neural stem cells replace neurons and oligodendrocytes in the forebrain of neonatal mice with excitotoxic brain damage. J Neurosci Res. 2005;82:592–608.

    Article  PubMed  CAS  Google Scholar 

  59. Mummery CL, Davis RP, Krieger JE. Challenges in using stem cells for cardiac repair. Sci Transl Med. 2010;2(27):27ps17. www.ScienceTranslationalMedicine.org.

    Article  PubMed  Google Scholar 

  60. Murohashi M, Nakamura T, Tanaka S, et al. An FGF4-FRS2alpha-Cdx-2 axis in trophoblast stem cells induces BMP4 to regulate proper growth of early mouse embryos. Stem Cells. 2010;28:113–21.

    PubMed  CAS  Google Scholar 

  61. Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell. 2008;132(4):661–80.

    Article  PubMed  CAS  Google Scholar 

  62. Murumatsu T, Murumatsu H. Carbohydrate antigens expressed on stem cells and early embryonic cells. Glycoconj J. 2004;21:41–5.

    Article  Google Scholar 

  63. Nadal-Ginard B, Torella D, Ellison G. Cardiovascular regenerative medicine at the crossroads. Rev Esp Cardiol. 2006;59(11):1175–89.

    Article  PubMed  Google Scholar 

  64. Nelson TJ, Behfar A, Yamada S, et al. Stem cell platforms for regenerative medicine. Clin Transl Sci. 2009;2(3):222–7.

    Article  PubMed  CAS  Google Scholar 

  65. Ohinata Y, Payer B, O’Carrol D, et al. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature. 2005;436:207–13.

    Article  PubMed  CAS  Google Scholar 

  66. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448:313–7.

    Article  PubMed  CAS  Google Scholar 

  67. Oosterhuis JW, Looijenga LH. Testicular germ-cell tumors in a broader perspective. Nat Rev Cancer. 2005;5:210–22.

    Article  PubMed  CAS  Google Scholar 

  68. Orlic DJ, Kajstura S, Chimenti I, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410:701–5.

    Article  PubMed  CAS  Google Scholar 

  69. Pan Y, Chen X, Wang S, et al. In vitro neuronal differentiation of cultured human embryonic germ cells. Biochem Biophys Res Commun. 2005;327:548–56.

    Article  PubMed  CAS  Google Scholar 

  70. Parast M, Yu H, Ciric A, et al. PPARgamma regulates trophoblast proliferation and promotes labrythine trilineage differentiation. PLoS One. 2009;4:e8055.

    Article  PubMed  CAS  Google Scholar 

  71. Park CH, Minn YK, Lee JY, et al. In vitro and in vivo analyses of human embryonic stem cell-derived dopamine neurons. J Neurochem. 2005;92:1265–76.

    Article  PubMed  CAS  Google Scholar 

  72. Park JH, Kim SJ, Lee JB, et al. Establishment of a human embryonic germ cell line and comparison with mouse and human embryonic stem cells. Mol Cells. 2004;17:309–15.

    PubMed  CAS  Google Scholar 

  73. Raya A, Rodríguez-Pizà I, Navarro S, et al. A protocol describing the genetic correction of somatic human cells and subsequent generation of iPS cells. Nat Protoc. 2010;5(4):647–60.

    Article  PubMed  CAS  Google Scholar 

  74. Resnick JL, Bixler LS, Cheng L, et al. Long-term proliferation of mouse primordial germ cells in culture. Nature. 1992;359(6395):550–1.

    Article  PubMed  CAS  Google Scholar 

  75. Riley P, Anson-Cartwright L, Cross JC. The Hand1 bHLH transcription factor is essential for placentation and cardiac morphogenesis. Nat Genet. 1998;18:271–5.

    Article  PubMed  CAS  Google Scholar 

  76. Rossant J, Cross C. Placental development: lessons from mouse mutants. Nat Rev Genet. 2001;2:538–48.

    Article  PubMed  CAS  Google Scholar 

  77. Rossant J. Stem cells and lineage development in the mammalian blastocyst. Reprod Fertil Dev. 2007;19:111–8.

    Article  PubMed  CAS  Google Scholar 

  78. Rossant J. Experimental approaches to mammalian embryonic development. Semin Dev Biol. vol. 6. In: Rossant J, Pedersons RA, editors. London: Cambridge University Press; 1995. p. 237.

    Google Scholar 

  79. Russ AP, Wattler S, Colledge WH, et al. Eome­sodermin is required for mouse trophoblast ­development and mesoderm formation. Nature. 2000;404:95–9.

    Article  PubMed  CAS  Google Scholar 

  80. Saitou M, Barton SC, Surani MA. A molecular program for the specification of germ cell fate in mice. Nature. 2002;418:293–300.

    Article  PubMed  CAS  Google Scholar 

  81. Shamblott MJ, Axelman J, Littlefield JW, et al. Human embryonic germ cell derivates express a broad range of developmentally distinct markers and proliferate extensively in vitro. Proc Natl Acad Sci USA. 2001;98:113–8.

    Article  PubMed  CAS  Google Scholar 

  82. Shamblott MJ, Kerr CL, Axelman J, et al. Derivation and differentiation of human embryonic germ cells. In: Lanza R, Gearhart J, Hogan BL, et al., editors. Handbook of stem cells. New York: Elsevier/Academic; 2004. p. 459–70.

    Chapter  Google Scholar 

  83. Shamblott MJ, Axelman J, Wang S, et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA. 1998;95(23):13726–31.

    Article  PubMed  CAS  Google Scholar 

  84. Sharp J, Keirstead HS. Therapeutic applications of oligodendrocyte precursors derived from human embryonic stem cells. Curr Opin Biotechnol. 2007;18:434–40.

    Article  PubMed  CAS  Google Scholar 

  85. Shiba Y, et al. Nature. 2012;489(7415):322–5.

    Article  PubMed  CAS  Google Scholar 

  86. Smith A. The battlefield of pluripotency. Cell. 2005;123:757–60.

    Article  PubMed  CAS  Google Scholar 

  87. Solter D, Dominis M, Damjanov I. Embryo-derived teratocarcinoma. III. Development of tumors from teratocarcinoma-permissive and non-permissive strain embryos transplanted to F1 hybrids. Int J Cancer. 1981;28:479–83.

    Article  PubMed  CAS  Google Scholar 

  88. Soto-Gutierrez A, Kobayashi N, Rivas-Carrillo JD, et al. Reversal of mouse hepatic failure using an implanted liver-assist device containing ES cell-derived hepatocytes. Nat Biotechnol. 2006;24:1412–9.

    Article  PubMed  CAS  Google Scholar 

  89. Stevens LC. Origin of testicular teratomas from primordialgerm cells in mice. J Natl Cancer Inst. 1967;38(4):549–52.

    PubMed  CAS  Google Scholar 

  90. Stevens LC. The development of transplantable teratocarcinomas from intratesticular grafts of pre- and post-implantation mouse embryos. Dev Biol. 1970;21:364.

    Article  PubMed  CAS  Google Scholar 

  91. Stewart MH, Bossé M, Chadwick K, Menendez P, Bendall SC, Bhatia M. Clonal isolation of hESCs reveals heterogeneity within the pluripotent stem cell compartment. Nat Methods. 2006;2(10):807–15.

    Article  CAS  Google Scholar 

  92. Strumpf D, Mao CA, Yamanaka Y, et al. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development. 2005;132:2093–102.

    Article  PubMed  CAS  Google Scholar 

  93. Swelstad BB, Kerr CL. Current protocols in the generation of pluripotent stem cells: theoretical methodological and clinical considerations. Stem Cells Cloning. 2010;3:13–27.

    CAS  Google Scholar 

  94. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  PubMed  CAS  Google Scholar 

  95. Tanaka S, Kunath T, Hadjantonakis AK, Nagy A, Rossant J. Promotion of trophoblast stem cell proliferation by FGF4. Science. 1998;282:2072–5.

    Article  PubMed  CAS  Google Scholar 

  96. Tesar PJ, Chenoweth JG, Brook FA, et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature. 2007;448:196–9.

    Article  PubMed  CAS  Google Scholar 

  97. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.

    Article  PubMed  CAS  Google Scholar 

  98. Thomson JA, Marshall VS. Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Primate embrionic stem cells. Curr Top Dev Biol. 1998;38:133–65.

    Article  PubMed  CAS  Google Scholar 

  99. Toyooka Y, Tsunekawa N, Takahashi Y, et al. Expression and intracellular localization of mouse Vasa-homologue protein during germ cell development. Mech Dev. 2000;93(1–2):139–49.

    Article  PubMed  CAS  Google Scholar 

  100. Trounson A. New perspectives in human stem cell therapeutic research. BMC Med. 2009;7:29.

    Article  PubMed  Google Scholar 

  101. Tsuji O, Miura K, Okada Y, et al. Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc Natl Acad Sci USA. 2010;107(28):12704–9.

    Article  PubMed  CAS  Google Scholar 

  102. Turnpenny L, Spalluto CM, Perrett RM, et al. Evaluating human embryonic germ cells: concord and conflict as pluripotent stem cells. Stem Cells. 2006;24(2):212–20.

    Article  PubMed  Google Scholar 

  103. Turnpenny L, Brickwood S, Spalluto CM, et al. Derivation of human embryonic germ cells: an alternative source of pluripotent stem cells. Stem Cells. 2003;21(5):598–609.

    Article  PubMed  Google Scholar 

  104. Vallier L, Mendjan S, Brown S, et al. Activin/Nodal signaling maintains pluripotency by controlling Nanog expression. Development. 2009;136:1339–49.

    Article  PubMed  CAS  Google Scholar 

  105. van Laake RW, Passier R, Monshouwer-Kloots J, et al. Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Res. 2007;1:9–24.

    Article  PubMed  Google Scholar 

  106. Vincent SD, Dunn NR, Sciammas R, et al. The zinc finger transcriptional repressor Blimps1/Prdm1 is dispensable for early axis formation but is required for specification of primordial germ cells in mouse. Development. 2005;132:1315–25.

    Article  PubMed  CAS  Google Scholar 

  107. Vugler A, Carr AJ, Lawrence J, et al. Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis, expansion and retinal transplantation. Exp Neurol. 2008;214(2):347–61.

    Article  PubMed  CAS  Google Scholar 

  108. Wilder PJ, Kelly D, Bringman K, et al. Inactivation of the FGF-4 gene in embryonic stem cells alters the growth and/or the survival of their early differentiated progeny. Dev Biol. 1997;192:614–29.

    Article  PubMed  CAS  Google Scholar 

  109. Xu RH, Chen X, Li DS, et al. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol. 2002;20:1261–4.

    Article  PubMed  CAS  Google Scholar 

  110. Yabuta Y, Kurimoto K, Ohinata Y, et al. Gene expression dynamics during germline specification in mice identified by quantitative single – cell gene expression profiling. Biol Reprod. 2006;75:705–16.

    Article  PubMed  CAS  Google Scholar 

  111. Yamaguchi S, Kimura H, Tada M, et al. Nanog expression in mouse germ cell development. Gene Expr Patterns. 2005;5:639–46.

    Article  PubMed  CAS  Google Scholar 

  112. Zou J, Maeder ML, Mali P, Pruett-Miller SM, Thibodeau-Beganny S, Chou BK, Chen G, Ye Z, Park IH, Daley GQ, Porteus MH, Joung JK, Cheng L. Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell. 2009;5:97–110.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported in part by grants (PI07119) from the “Fondo de Investigaciones Sanitarias”, Ministry of Health, and Agencia Laín Entralgo, Madrid, Spain; SAF2010-19230 and BFU2004-00467 from the Ministry of Science and Innovation, Spain; the BioMedical Foundation Mutua Madrileña, Spain; and PAMER grants, Aragon Health Sciences Institute, Spain. The authors wish to acknowledge Fatima Dominguez for technical assistance and Gareth William Osborne for linguistic assistance.

Conflict of Interest:The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria P. De Miguel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

De Miguel, M.P., Schoorlemmer, J., Garcia-Tuñón, I. (2013). Pluripotent Stem Cells of the Mammalian Early Embryo. In: Bhattacharya, N., Stubblefield, P. (eds) Human Fetal Tissue Transplantation. Springer, London. https://doi.org/10.1007/978-1-4471-4171-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4171-6_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4170-9

  • Online ISBN: 978-1-4471-4171-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics