Skip to main content

Biobanking and Cryopreservation of Obstetrical Cell Sources for Cardiovascular Tissue Engineering: Implications for Future Therapies

  • Chapter
  • First Online:
Human Fetal Tissue Transplantation

Abstract

Biobanks are central to translational research and have contributed to frequent advancements in our understanding and treatment of disease. As described by Watson et al., biobanks are collections of biospecimens and patient data. Biospecimens, for example, blood and body fluids, tissues, and their derivatives, collected for therapy and/or research are usually obtained from the public who become patients in the health-care system [1]. These patients donate biospecimens during hospitalization, which accrued by biobanks are processed and preserved in a variety of ways to support different research and/or, at a progressive rate, therapeutic applications. Annotation encompasses documentation of the biospecimens’ composition associated with the patient history, circumstance, cure, and outcome. To insure the integrity of the banked specimens, three criteria must be the following: (1) purity/authenticity, ideally confirmed before and after asservation; (2) assignment of patient history, which has to be updated with prospective hospitalization; and (3) constancy, including repeated sample validation and quality control [2–4]. Generally, if material is used for therapy, principles of current good manufacturing practices (cGMP) are applied for the entire process from collection to freezing, storage, transportation, and thawing of the material [5]. Sample purity and authenticity is essential to evade incorrect data or performance of the sample. Authenticity is usually determined by testing stable phenotypic or genotypic characteristics. The value of each collected sample is strongly reliant on the associated dataset, that is, the health history of the donor. Consequently, the database collection should be based on a health history with continuous updates. It is a serious concern as cell cultures and cell lines are known to undergo irreversible changes if cultured, especially in unproven maintenance media for long periods [6]. It is essential that biobanks sustain quality control to ensure that stored and distributed samples maintain their characteristics [7] (for protocols see [3]). The precise quality control procedure varies depending on the particular characteristics of the type of culture. This can be achieved through the adoption of working practices including establishment of master and working banks. These requirements have been outlined in best practice guidelines for culture collections such as ISBER’s “Best Practices for Repositories: Collection, Storage, Retrieval, and Distribution of Biological Materials for Research” [8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Watson PH, et al. Evolutionary concepts in ­biobanking – the BC BioLibrary. J Transl Med. 2009;7:95.

    Article  PubMed  Google Scholar 

  2. Stacey GN. Cell contamination leads to inaccurate data: we must take action now. Nature. 2000;403(6768):356.

    Article  PubMed  CAS  Google Scholar 

  3. Stacey GN, Masters JR. Cryopreservation and banking of mammalian cell lines. Nat Protoc. 2008;3(12):1981–9.

    Article  PubMed  CAS  Google Scholar 

  4. Day JG, Stacey GN. Biobanking. Mol Biotechnol. 2008;40(2):202–13.

    Article  PubMed  CAS  Google Scholar 

  5. Amps KJ, et al. In situ cryopreservation of human embryonic stem cells in gas-permeable membrane culture cassettes for high post-thaw yield and good manufacturing practice. Cryobiology. 2010;60(3):344–50.

    Article  PubMed  CAS  Google Scholar 

  6. Stacey GN. Standardisation of cell lines. Dev Biol (Basel). 2002;111:259–72.

    CAS  Google Scholar 

  7. Cardoso S, et al. Quality standards in Biobanking: authentication by genetic profiling of blood spots from donor’s original sample. Eur J Hum Genet. 2010;18(7):848–51.

    Article  PubMed  Google Scholar 

  8. Pitt KE, et al. In: Pitt KE, editor. Cell preservation technology, vol. 6. 2nd ed. New Rochelle: Mary Ann Liebert, Inc.; 2008. p. 58.

    Google Scholar 

  9. Karlsson JO, Toner M. Long-term storage of tissues by cryopreservation: critical issues. Biomaterials. 1996;17(3):243–56.

    Article  PubMed  CAS  Google Scholar 

  10. Sauer-Heilborn A, Kadidlo D, McCullough J. Patient care during infusion of hematopoietic progenitor cells. Transfusion. 2004;44(6):907–16.

    Article  PubMed  Google Scholar 

  11. Preisler HD, Giladi M. Differentiation of erythroleukemic cells in vitro: irreversible induction by dimethyl sulfoxide (DMSO). J Cell Physiol. 1975;85(3):537–46.

    Article  PubMed  CAS  Google Scholar 

  12. Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet. 2002;3(9):662–73.

    Article  PubMed  CAS  Google Scholar 

  13. Iwatani M, et al. Dimethyl sulfoxide has an impact on epigenetic profile in mouse embryoid body. Stem Cells. 2006;24(11):2549–56.

    Article  PubMed  CAS  Google Scholar 

  14. Beattie GM, et al. Trehalose: a cryoprotectant that enhances recovery and preserves function of human pancreatic islets after long-term storage. Diabetes. 1997;46(3):519–23.

    Article  PubMed  CAS  Google Scholar 

  15. Buchanan SS, et al. Cryopreservation of stem cells using trehalose: evaluation of the method using a human hematopoietic cell line. Stem Cells Dev. 2004;13(3):295–305.

    Article  PubMed  CAS  Google Scholar 

  16. Holovati JL, Acker JP. Spectrophotometric measurement of intraliposomal trehalose. Cryobiology. 2007;55(2):98–107.

    Article  PubMed  CAS  Google Scholar 

  17. Holovati JL, Gyongyossy-Issa MI, Acker JP. Effects of trehalose-loaded liposomes on red blood cell response to freezing and post-thaw membrane quality. Cryobiology. 2009;58(1):75–83.

    Article  PubMed  CAS  Google Scholar 

  18. Anchordoguy TJ, et al. Insights into the cryoprotective mechanism of dimethyl sulfoxide for phospholipid bilayers. Cryobiology. 1991;28(5):467–73.

    Article  PubMed  CAS  Google Scholar 

  19. Fahy GM, et al. Vitrification as an approach to cryopreservation. Cryobiology. 1984;21(4):407–26.

    Article  PubMed  CAS  Google Scholar 

  20. Sformo T, et al. Deep supercooling, vitrification and limited survival to −100{degrees}C in the Alaskan beetle Cucujus clavipes puniceus (Coleoptera: Cucujidae) larvae. J Exp Biol. 2010;213(Pt 3):502–9.

    Article  PubMed  CAS  Google Scholar 

  21. Kuleshova LL, Gouk SS, Hutmacher DW. Vitrification as a prospect for cryopreservation of tissue-engineered constructs. Biomaterials. 2007;28(9):1585–96.

    Article  PubMed  CAS  Google Scholar 

  22. Kuleshova LL, Lopata A. Vitrification can be more favorable than slow cooling. Fertil Steril. 2002;78(3):449–54.

    Article  PubMed  Google Scholar 

  23. Fahy GM, Wowk B, Wu J. Cryopreservation of complex systems: the missing link in the regenerative medicine supply chain. Rejuvenation Res. 2006;9(2):279–91.

    Article  PubMed  CAS  Google Scholar 

  24. Brand A, et al. Cord blood banking. Vox Sang. 2008;95(4):335–48.

    Article  PubMed  CAS  Google Scholar 

  25. International NetCord Foundation. Available online at https://www.netcord.org/ Accessed 12 July 2012.

  26. Bone Marrow Donors Worldwide. Available online at http://www.bmdw.org Accessed 12 July 2012.

  27. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.

    Article  PubMed  CAS  Google Scholar 

  28. Tohyama H, et al. Atelocollagen-associated autologous chondrocyte implantation for the repair of chondral defects of the knee: a prospective multicenter clinical trial in Japan. J Orthop Sci. 2009;14(5):579–88.

    Article  PubMed  CAS  Google Scholar 

  29. van Osch GJ, et al. Cartilage repair: past and future – lessons for regenerative medicine. J Cell Mol Med. 2009;13(5):792–810.

    Article  PubMed  CAS  Google Scholar 

  30. Voss P, et al. Bone regeneration in sinus lifts: comparing tissue-engineered bone and iliac bone. Br J Oral Maxillofac Surg. 2010;48(2):121–6.

    Article  PubMed  Google Scholar 

  31. Scuderi N, et al. Clinical application of autologous three-cellular cultured skin substitutes based on esterified hyaluronic acid scaffold: our experience. In Vivo. 2009;23(6):991–1003.

    PubMed  Google Scholar 

  32. Mol A, et al. Review article: tissue engineering of semilunar heart valves: current status and future developments. J Heart Valve Dis. 2004;13(2):272–80.

    PubMed  Google Scholar 

  33. Schoen FJ. Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering. Circulation. 2008;118(18):1864–80.

    Article  PubMed  Google Scholar 

  34. Schmidt D, et al. Prenatally fabricated autologous human living heart valves based on amniotic fluid derived progenitor cells as single cell source. Circulation. 2007;116(11 Suppl):I64–70.

    PubMed  Google Scholar 

  35. Schmidt D, et al. Living autologous heart valves engineered from human prenatally harvested progenitors. Circulation. 2006;114 Suppl 1:I125–31.

    PubMed  Google Scholar 

  36. Bilic G, et al. Comparative characterization of cultured human term amnion epithelial and mesenchymal stromal cells for application in cell therapy. Cell Transplant. 2008;17(8):955–68.

    Article  PubMed  Google Scholar 

  37. Schmidt D, et al. Engineering of biologically active living heart valve leaflets using human umbilical cord-derived progenitor cells. Tissue Eng. 2006;12(11):3223–32.

    Article  PubMed  CAS  Google Scholar 

  38. Zeisberger SM, et al. Optimization of the culturing conditions of human umbilical cord blood-derived endothelial colony-forming cells under xeno-free conditions applying a transcriptomic approach. Genes Cells. 2010;15(7):671–87.

    Article  PubMed  CAS  Google Scholar 

  39. Kogler G, et al. Future of cord blood for non-oncology uses. Bone Marrow Transplant. 2009;44(10):683–97.

    Article  PubMed  CAS  Google Scholar 

  40. Kogler G, Sensken S, Wernet P. Comparative generation and characterization of pluripotent unrestricted somatic stem cells with mesenchymal stem cells from human cord blood. Exp Hematol. 2006;34(11):1589–95.

    Article  PubMed  CAS  Google Scholar 

  41. Armson BA. Umbilical cord blood banking: implications for perinatal care providers. J Obstet Gynaecol Can. 2005;27(3):263–90.

    PubMed  Google Scholar 

  42. Matheny RG, et al. Porcine small intestine submucosa as a pulmonary valve leaflet substitute. J Heart Valve Dis. 2000;9(6):769–74; discussion 774–5.

    PubMed  CAS  Google Scholar 

  43. Weber B, et al. Regenerating heart valves, In: Regenerating the heart: Stem cells and the cardiovascular system; Series: Stem Cell Biology and Regenerative Medicine (Eds. Cohen, I., Glen R.), Springer 2011, XIV, 556:403–442.

    Article  PubMed  Google Scholar 

  44. Schmidt D, Stock UA, Hoerstrup SP. Tissue engineering of heart valves using decellularized xenogeneic or polymeric starter matrices. Philos Trans R Soc Lond B Biol Sci. 2007;362(1484):1505–12.

    Article  PubMed  CAS  Google Scholar 

  45. Breuer CK, et al. Application of tissue-engineering principles toward the development of a semilunar heart valve substitute. Tissue Eng. 2004;10(11–12):1725–36.

    Article  PubMed  CAS  Google Scholar 

  46. Brody S, Pandit A. Approaches to heart valve tissue engineering scaffold design. J Biomed Mater Res B Appl Biomater. 2007;83(1):16–43.

    PubMed  Google Scholar 

  47. Sacks MS, Schoen FJ, Mayer JE. Bioengineering challenges for heart valve tissue engineering. Annu Rev Biomed Eng. 2009;11:289–313.

    Article  PubMed  CAS  Google Scholar 

  48. Brennan MP, et al. Tissue-engineered vascular grafts demonstrate evidence of growth and development when implanted in a juvenile animal model. Ann Surg. 2008;248(3):370–7.

    PubMed  Google Scholar 

  49. Koch S, et al. Fibrin-polylactide-based tissue-­engineered vascular graft in the arterial circulation. Biomaterials. 2010;31(17):4731–9.

    Article  PubMed  CAS  Google Scholar 

  50. Hoerstrup SP, et al. Functional growth in tissue-engineered living, vascular grafts: follow-up at 100 weeks in a large animal model. Circulation. 2006;114(1 Suppl):I159–66.

    PubMed  Google Scholar 

  51. Weber B, et al. Prenatally harvested cells for cardiovascular tissue engineering: fabrication of autologous implants prior to birth. Placenta. 2011;32(4):316–9.

    Article  PubMed  Google Scholar 

  52. Miki T, Strom SC. Amnion-derived pluripotent/multipotent stem cells. Stem Cell Rev. 2006;2(2): 133–42.

    Article  PubMed  CAS  Google Scholar 

  53. Parolini O, et al. Amniotic membrane and amniotic fluid-derived cells: potential tools for regenerative medicine? Regen Med. 2009;4(2):275–91.

    Article  PubMed  CAS  Google Scholar 

  54. De Coppi P, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25(1):100–6.

    Article  PubMed  CAS  Google Scholar 

  55. Kaviani A, et al. Fetal tissue engineering from amniotic fluid. J Am Coll Surg. 2003;196(4):592–7.

    Article  PubMed  Google Scholar 

  56. Kunisaki SM, et al. Tissue engineering from human mesenchymal amniocytes: a prelude to clinical ­trials. J Pediatr Surg. 2007;42(6):974–9; discussion 979–80.

    Article  PubMed  Google Scholar 

  57. Schmidt D, et al. Cryopreserved amniotic fluid-derived cells: a lifelong autologous fetal stem cell source for heart valve tissue engineering. J Heart Valve Dis. 2008;17(4):446–55; discussion 455.

    PubMed  Google Scholar 

  58. Zhang X, et al. Mesenchymal progenitor cells derived from chorionic villi of human placenta for cartilage tissue engineering. Biochem Biophys Res Commun. 2006;340(3):944–52.

    Article  PubMed  CAS  Google Scholar 

  59. Tanaka KA, Key NS, Levy JH. Blood coagulation: hemostasis and thrombin regulation. Anesth Analg. 2009;108(5):1433–46.

    Article  PubMed  CAS  Google Scholar 

  60. El-Hamamsy I, et al. Endothelium-dependent regulation of the mechanical properties of aortic valve cusps. J Am Coll Cardiol. 2009;53(16):1448–55.

    Article  PubMed  CAS  Google Scholar 

  61. Kasimir MT, et al. The decellularized porcine heart valve matrix in tissue engineering: platelet adhesion and activation. Thromb Haemost. 2005;94(3):562–7.

    PubMed  CAS  Google Scholar 

  62. Hoerstrup SP, et al. Functional living trileaflet heart valves grown in vitro. Circulation. 2000;102(19 Suppl 3):III44–9.

    PubMed  CAS  Google Scholar 

  63. Shinoka T, et al. Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann Thorac Surg. 1995;60(6 Suppl):S513–6.

    Article  PubMed  CAS  Google Scholar 

  64. Sodian R, et al. Early in vivo experience with tissue-engineered trileaflet heart valves. Circulation. 2000;102(19 Suppl 3):III22–9.

    PubMed  CAS  Google Scholar 

  65. Alsberg E, von Recum HA, Mahoney MJ. Environmental cues to guide stem cell fate decision for tissue engineering applications. Expert Opin Biol Ther. 2006;6(9):847–66.

    Article  PubMed  CAS  Google Scholar 

  66. Aird WC. Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res. 2007;100(2):174–90.

    Article  PubMed  CAS  Google Scholar 

  67. Asahara T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–7.

    Article  PubMed  CAS  Google Scholar 

  68. Javed MJ, et al. Endothelial colony forming cells and mesenchymal stem cells are enriched at different gestational ages in human umbilical cord blood. Pediatr Res. 2008;64(1):68–73.

    Article  PubMed  Google Scholar 

  69. Ingram DA, et al. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood. 2004;104(9):2752–60.

    Article  PubMed  CAS  Google Scholar 

  70. Urbich C, Dimmeler S. Endothelial progenitor cells functional characterization. Trends Cardiovasc Med. 2004;14(8):318–22.

    Article  PubMed  CAS  Google Scholar 

  71. Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res. 2004;95(4):343–53.

    Article  PubMed  CAS  Google Scholar 

  72. Yoder MC. Is endothelium the origin of endothelial progenitor cells? Arterioscler Thromb Vasc Biol. 2010;30(6):1094–103.

    Article  PubMed  CAS  Google Scholar 

  73. Kawamoto A, Losordo DW. Endothelial progenitor cells for cardiovascular regeneration. Trends Cardiovasc Med. 2008;18(1):33–7.

    Article  PubMed  CAS  Google Scholar 

  74. Hofmann M, et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation. 2005;111(17):2198–202.

    Article  PubMed  Google Scholar 

  75. Iwasaki H, et al. Dose-dependent contribution of CD34-positive cell transplantation to concurrent vasculogenesis and cardiomyogenesis for functional regenerative recovery after myocardial infarction. Circulation. 2006;113(10):1311–25.

    Article  PubMed  CAS  Google Scholar 

  76. Kocher AA, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med. 2001;7(4):430–6.

    Article  PubMed  CAS  Google Scholar 

  77. Martin-Rendon E, et al. Stem cell treatment for acute myocardial infarction. Cochrane Database Syst Rev. 2008;4:CD006536.

    PubMed  Google Scholar 

  78. Pearson JD. Endothelial progenitor cells – hype or hope? J Thromb Haemost. 2009;7(2):255–62.

    Article  PubMed  CAS  Google Scholar 

  79. Shirota T, et al. Human endothelial progenitor cell-seeded hybrid graft: proliferative and antithrombogenic potentials in vitro and fabrication processing. Tissue Eng. 2003;9(1):127–36.

    Article  PubMed  CAS  Google Scholar 

  80. Kaushal S, et al. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med. 2001;7(9):1035–40.

    Article  PubMed  CAS  Google Scholar 

  81. Shirota T, et al. Fabrication of endothelial progenitor cell (EPC)-seeded intravascular stent devices and in vitro endothelialization on hybrid vascular tissue. Biomaterials. 2003;24(13):2295–302.

    Article  PubMed  CAS  Google Scholar 

  82. Schmidt D, et al. Engineered living blood vessels: functional endothelia generated from human umbilical cord-derived progenitors. Ann Thorac Surg. 2006;82(4):1465–71; discussion 1471.

    Article  PubMed  Google Scholar 

  83. Schmidt D, et al. Umbilical cord blood derived endothelial progenitor cells for tissue engineering of vascular grafts. Ann Thorac Surg. 2004;78(6):2094–8.

    Article  PubMed  Google Scholar 

  84. Schmidt D, et al. Living patches engineered from human umbilical cord derived fibroblasts and endothelial progenitor cells. Eur J Cardiothorac Surg. 2005;27(5):795–800.

    Article  PubMed  Google Scholar 

  85. Dvorin EL, et al. Human pulmonary valve endothelial cells express functional adhesion molecules for leukocytes. J Heart Valve Dis. 2003;12(5):617–24.

    PubMed  Google Scholar 

  86. Kim S, von Recum H. Endothelial stem cells and precursors for tissue engineering: cell source, differentiation, selection, and application. Tissue Eng Part B Rev. 2008;14(1):133–47.

    Article  PubMed  CAS  Google Scholar 

  87. Sales VL, et al. Transforming growth factor-beta1 modulates extracellular matrix production, proliferation, and apoptosis of endothelial progenitor cells in tissue-engineering scaffolds. Circulation. 2006;114(1 Suppl):I193–9.

    PubMed  Google Scholar 

  88. Ferguson VL, Dodson RB. Bioengineering aspects of the umbilical cord. Eur J Obstet Gynecol Reprod Biol. 2009;144 Suppl 1:S108–13.

    Article  PubMed  Google Scholar 

  89. Wang HS, et al. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells. 2004;22(7):1330–7.

    Article  PubMed  Google Scholar 

  90. Kadner A, et al. Human umbilical cord cells: a new cell source for cardiovascular tissue engineering. Ann Thorac Surg. 2002;74(4):S1422–8.

    Article  PubMed  Google Scholar 

  91. Kadner A, et al. Human umbilical cord cells for cardiovascular tissue engineering: a comparative study. Eur J Cardiothorac Surg. 2004;25(4):635–41.

    Article  PubMed  Google Scholar 

  92. Kobayashi K, Kubota T, Aso T. Study on myofibroblast differentiation in the stromal cells of Wharton’s jelly: expression and localization of alpha-smooth muscle actin. Early Hum Dev. 1998;51(3):223–33.

    Article  PubMed  CAS  Google Scholar 

  93. Kogler G, et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med. 2004;200(2):123–35.

    Article  PubMed  Google Scholar 

  94. Lee OK, et al. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood. 2004;103(5):1669–75.

    Article  PubMed  CAS  Google Scholar 

  95. Sarugaser R, et al. Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells. 2005;23(2):220–9.

    Article  PubMed  Google Scholar 

  96. Weiss ML, et al. Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells. 2008;26(11):2865–74.

    Article  PubMed  CAS  Google Scholar 

  97. Weiss ML, et al. Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells. 2006;24(3):781–92.

    Article  PubMed  CAS  Google Scholar 

  98. Sipehia R, Martucci G, Lipscombe J. Transplantation of human endothelial cell monolayer on artificial vascular prosthesis: the effect of growth-support surface chemistry, cell seeding density, ECM protein coating, and growth factors. Artif Cells Blood Substit Immobil Biotechnol. 1996;24(1):51–63.

    Article  PubMed  CAS  Google Scholar 

  99. Koike N, et al. Tissue engineering: creation of long-lasting blood vessels. Nature. 2004;428(6979): 138–9.

    Article  PubMed  CAS  Google Scholar 

  100. Sodian R, et al. Tissue engineering of autologous human heart valves using cryopreserved vascular umbilical cord cells. Ann Thorac Surg. 2006;81(6):2207–16.

    Article  PubMed  Google Scholar 

  101. Messier Jr RH, et al. Dual structural and functional phenotypes of the porcine aortic valve interstitial population: characteristics of the leaflet myofibroblast. J Surg Res. 1994;57(1):1–21.

    Article  PubMed  Google Scholar 

  102. Hoerstrup SP, et al. Living, autologous pulmonary artery conduits tissue engineered from human umbilical cord cells. Ann Thorac Surg. 2002;74(1):46–52; discussion 52.

    Article  PubMed  Google Scholar 

  103. Breymann C, Schmidt D, Hoerstrup SP. Umbilical cord cells as a source of cardiovascular tissue engineering. Stem Cell Rev. 2006;2(2):87–92.

    Article  PubMed  Google Scholar 

  104. Ruhil S, Kumar V, Rathee P. Umbilical cord stem cell: an overview. Curr Pharm Biotechnol. 2009;10(3):327–34.

    Article  PubMed  CAS  Google Scholar 

  105. Schmidt D, Hoerstrup SP. Tissue engineered heart valves based on human cells. Swiss Med Wkly. 2007;137 Suppl 155:S80–5.

    Google Scholar 

  106. Sodian R, et al. Use of human umbilical cord blood-derived progenitor cells for tissue-engineered heart valves. Ann Thorac Surg. 2010;89(3):819–28.

    Article  PubMed  Google Scholar 

  107. Oswald J, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells. 2004;22(3):377–84.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen M. Zeisberger Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Zeisberger, S.M., Weber, B., Hoerstrup, S.P. (2013). Biobanking and Cryopreservation of Obstetrical Cell Sources for Cardiovascular Tissue Engineering: Implications for Future Therapies. In: Bhattacharya, N., Stubblefield, P. (eds) Human Fetal Tissue Transplantation. Springer, London. https://doi.org/10.1007/978-1-4471-4171-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4171-6_36

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4170-9

  • Online ISBN: 978-1-4471-4171-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics