Skip to main content

Embryology of Fetal Tissue

  • Chapter
  • First Online:
Human Fetal Tissue Transplantation

Abstract

When the first ever clinical embryologist, Bob Edwards, saw the fertilization of a human oocyte in vitro he was witnessing not only a momentous event in clinical medicine but also the creation of totipotent stem cells [249]. At the point of fertilization and up to the point of early compaction, the blastomeres of the human embryo are generally considered to be totipotent stem cells. These totipotent stem cells can differentiate into all cell types and therefore have the ability to create a complete new individual [60]. It is possible that blastomeres are totipotent to enable correction of early developmental errors in the embryo [87]. The data on totipotent stem cells come from experimental embryology using animal embryos as the legal and ethical restrictions on human embryo experimentation restrict such work [84]. From this animal experimentation, it is known that totipotent stem cells can develop into endoderm, mesoderm and ectoderm, germ cells, extraembryonic tissue, and trophoblast. In the mouse embryo, asymmetric divisions at the eight-cell stage result in two populations of cells [111]. The inner cell mass (ICM) of the blastocyst then develops from cells positioned inside the embryo, and those cells on the outside of the embryo develop into the trophectoderm which subsequently develops into the placenta [58, 72, 203]. Two ICM cell types then develop [76] which are:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbud-Filho M, Pavarino-Bertelli EC, Alvarenga MPS, Fernandes IMM, Toledo RA, Tajara EH, Savoldi-Bsrbosa M, Goldmann GH, Goloni-Bertollo EM. Systemic lupus erythematosus and microchimerism in autoimmunity. Transplant Proc. 2002;34:2951–2.

    PubMed  CAS  Google Scholar 

  2. Adams KM, Lambert NC, Heimfeld S, Tylee TS, Pang JM, Erickson TD, Nelson JL. Male DNA in female donor apheresis and CD34-enriched products. Blood. 2003;102:3845–57.

    PubMed  CAS  Google Scholar 

  3. Adams KM, Yan Z, Stevens AM, Nelson JL. The changing maternal  «  self  »  hypothesis: a mechanism for maternal tolerance of the fetus. Placenta. 2007;28:378–82.

    PubMed  CAS  Google Scholar 

  4. Al-Mufti R, Lees C, Albaiges G, Hambley H, Nicolaides KH. Fetal cells in maternal blood of pregnancies with severe fetal growth restriction. Hum Reprod. 2000;15:218–21.

    PubMed  CAS  Google Scholar 

  5. Anagnostou A, Lee ES, Kessimian N, Levinson R, Steiner M. Erythropoietin has a mitogenic and positive chemotactic effect on endothelial cells. Proc Natl Acad Sci USA. 1990;87:5978–82.

    PubMed  CAS  Google Scholar 

  6. Anagnostou A, Liu Z, Manfred S, Chin K, Lee ES, Kessimian N, Noguchi CT. Erythropoietin receptor mRNA expression in human endothelial cells. Proc Natl Acad Sci USA. 1994;91:3974–8.

    PubMed  CAS  Google Scholar 

  7. Ando T, Imaizumi M, Graves PN, Unger P, Davies TF. Intrathyroidal fetal microchimerism in Graves’ disease. J Clin Endocrinol Metab. 2002;87:3315–20.

    PubMed  CAS  Google Scholar 

  8. Apps R, Gardner L, Sharkey AM, Holmes N, Moffett A. A homodimeric complex of HLA-G on normal trophoblast cells modulates antigen-presenting cells via LILRB1. Eur J Immunol. 2007;37:1924–37.

    PubMed  CAS  Google Scholar 

  9. Ariga H, Ohto H, Busch MP, Imamura S, Watson R, Reed W, Lee TH. Kinetics of fetal cellular and cell-free DNA in the maternal circulation during and after pregnancy: implications for noninvasive prenatal diagnosis. Transfusion. 2001;41:1524–30.

    PubMed  CAS  Google Scholar 

  10. Artlett CM, Ramos R, Jiminez SA, Patterson K, Miller FW, Rider LG. Chimeric cells of maternal origin in juvenile idiopathic inflammatory myopathies. Lancet. 2000;356:2155–6.

    PubMed  CAS  Google Scholar 

  11. Artlett C, O’Hanlon T, Lopez A, Song Y, Miller F, Rider L. HLA-DQA1 is not an apparent risk factor for microchimerism in patients with various autoimmune diseases and in healthy individuals. Arthritis Rheum. 2003;48:2567–72.

    PubMed  CAS  Google Scholar 

  12. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–7.

    PubMed  CAS  Google Scholar 

  13. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999;85:221–8.

    PubMed  CAS  Google Scholar 

  14. Askelund K, Liddell HS, Zanderigo AM, Fernando NS, Khong TY, Stone PR, Chamley LW. CD83(+) dendritic cells in the decidua of women with recurrent miscarriage and normal pregnancy. Placenta. 2004;25:140–5.

    PubMed  CAS  Google Scholar 

  15. Athanassaki I, Aifantis Y, Makrygiannakis A, Koumantaki E, Vassiliadi S. Placental tissues from human miscarriages expresses class II HLA-DR antigens. Am J Reprod Immunol. 1985;34:281–7.

    Google Scholar 

  16. Bailey AS, Fleming WH. Converging roads: evidence for an adult hemangioblast. Exp Hematol. 2003;31:987–93.

    PubMed  CAS  Google Scholar 

  17. Bailey AS, Jiang S, Afentoulis M, Baumann CI, Schroeder DA, Olson SB, Wong MH. Transplanted adult hematopoietic stem cells differentiate into functional endothelial cells. Blood. 2004;103:13–9.

    PubMed  CAS  Google Scholar 

  18. Bamforth SD, Braganca J, Eloranta JJ, Murdoch JN, Marques FI, Kranc KR, Farza H, Henderson DJ, Hurst HC, Bhattacharya S. Cardiac malformations, adrenal agenesis, neural crest defects and exencephaly in mice lacking Cited2, a new Tfap2 co-activator. Nat Genet. 2001;29:469–74.

    PubMed  CAS  Google Scholar 

  19. Bayes-Genis A, Bellosillo B, de la Calle O, Salido M, Roura S, Ristol FS, Soler C, Martinez M, Espinet B, Serrano S, Bayes de Luna A, Cinca J. Identification of male cardiomyocytes of extracardiac origin in the hearts of women with male progeny: male fetal cell microchimerism of the heart. J Heart Lung Transplant. 2005;24:2179–83.

    PubMed  Google Scholar 

  20. Ben Brahim E, Mrad K, Driss M, Farah F, Oueslati H, Rezigua H, Ben RK. Placental metastasis of breast cancer. Gynecol Obstet Fertil. 2001;29(7–8):545–8.

    PubMed  CAS  Google Scholar 

  21. Benirshke K, Kauffman P. Pathology of the human placenta. New York: Springer; 2000.

    Google Scholar 

  22. Bhattacharya S, Michels CL, Leung MK, Arany ZP, Kung AL, Livingston DM. Functional role of p35srj, a novel p300/CBP binding protein, during transactivation by HIF-1. Genes Dev. 1999;13:64–75.

    PubMed  CAS  Google Scholar 

  23. Bianchi DW, Zickwolf GK, Weil GJ, Sylvester S, DeMaria MA. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci USA. 1996;93:705–8.

    PubMed  CAS  Google Scholar 

  24. Bianchi DW, Williams JM, Sullivan LM, Hanson FW, Klinger KW, Shuber AP. PCR quantitation of fetal cells in maternal blood in normal and aneuploid pregnancies. Am J Hum Genet. 1997;61:822–9.

    PubMed  CAS  Google Scholar 

  25. Bianchi DW, Farina A, Weber W, Delli-Bovi LC, Deriso M, Williams JM, Klinger KW. Significant fetal-maternal hemorrhage after termination of pregnancy: implications for development of fetal cell microchimerism. Am J Obstet Gynecol. 2001;184:703–6.

    PubMed  CAS  Google Scholar 

  26. Bianchi DW, Romero R. Biological implications of bi-directional fetomaternal cell traffic: a summary of a National Institute of Child Health and Human Development-sponsored conference. J Matern Fetal Neonatal Med. 2003;14:123–9.

    PubMed  CAS  Google Scholar 

  27. Blakolmer K, Jaskiewicz K, Dunsford HA, Robson SC. Hematopoietic stem cell markers are expressed by ductal plate and bile duct cells in developing human liver. Hepatology. 1995;21:1510–6.

    PubMed  CAS  Google Scholar 

  28. Blois SM, Ilarregu JM, Tometten M, Garcia M, Orsal AS, Cordo-Russo R, Toscano MA, Bianco GA, Kobelt P, Handjiski B. A pivotal role for galectin-1 in fetomaternal tolerance. Nat Med. 2007;13:1450–7.

    PubMed  CAS  Google Scholar 

  29. Blois SM, Kammerer U, Soto CA, Tometten MC, Shaikly V, Barrientos G, Jurd R, Rukavina D, Thomson AW, Klapp BF. Dendritic cells: key to fetal tolerance? Biol Reprod. 2007;77:590–8.

    PubMed  CAS  Google Scholar 

  30. Bohnsack BL, Lai L, Dolle P, Hirschi KK. Signaling hierarchy downstream of retinoic acid that independently regulates vascular remodeling and endothelial cell proliferation. Genes Dev. 2004;18:1345–58.

    PubMed  CAS  Google Scholar 

  31. Borthwick GM, Holmes RC, Stirrat GM. Abnormal expression of class II MHC antigens in placentae from patients with pemphigoid gestationis: analysis of class II MHC subregion product expression. Placenta. 1988;9:81–94.

    PubMed  CAS  Google Scholar 

  32. Brodsky I, Baren M, Kahn SB, Lewis Jr G, Tellem M. Metastatic malignant melanoma from mother to fetus. Cancer. 1965;18:1048–54.

    PubMed  CAS  Google Scholar 

  33. Byrd N, Becker S, Maye P, Narasimhaiah R, St-Jacques B, Zhang X, McMahon J, McMahon A, Grabel L. Hedgehog is required for murine yolk sac angiogenesis. Development. 2002;129:361–72.

    PubMed  CAS  Google Scholar 

  34. Carlucci F, Priori R, Valesini G. Microchimerism in Sjogren’s syndrome. Rheumatology. 2003;42:486–7.

    PubMed  CAS  Google Scholar 

  35. Caspi RR. Ocular autoimmunity: the price of privilege? Immunol Rev. 2006;213:23–35.

    PubMed  Google Scholar 

  36. Cha D, Khosrotehrani K, Kim Y, Stroh H, Bianchi DW, Johnson KL. Cervical cancer and microchimerism. Obstet Gynecol. 2003;102:774–81.

    PubMed  Google Scholar 

  37. Chang CC, Ciubotariu R, Manavalan JS, Yuan J, Colovai AI, Piazza F, Lederman S, Colonna M, Cortesini R, Dallafavera R. Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat Immunol. 2002;3:237–43.

    PubMed  CAS  Google Scholar 

  38. Chazaud C, Yamanaka Y, Pawson T, Rossant J. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev Cell. 2006;10:615–24.

    PubMed  CAS  Google Scholar 

  39. Chiu RWK, Poon LLM, Lau TK, Leung TN, Wong EMC, Lo YMD. Effects of blood-processing protocols on fetal and total DNA quantification in maternal plasma. Clin Chem. 2001;47:1607–13.

    PubMed  CAS  Google Scholar 

  40. Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G. A common precursor for hematopoietic and endothelial cells. Development. 1998;125:725–32.

    PubMed  CAS  Google Scholar 

  41. Chung YS, Zhang WJ, Arentson E, Kingsley PD, Palis J, Choi K. Lineage analysis of the hemangioblast as defined by FLK1 and SCL expression. Development. 2002;129:5511–20.

    PubMed  CAS  Google Scholar 

  42. Clotman F, Lannoy VJ, Reber M, Cereghini S, Cassiman D, Jacquemin P, Roskams T, Rousseau GG, Lemaigre FP. The onecut transcription factor HNF6 is required for normal development of the biliary tract. Development. 2002;129:1819–28.

    PubMed  CAS  Google Scholar 

  43. Coffinier C, Gresh L, Fiette L, Tronche F, Schutz G, Babinet C, Pontoglio M, Yaniv M, Barra J. Bile system morphogenesis defects and liver dysfunction upon targeted deletion of HNF1beta. Development. 2002;129:1829–38.

    PubMed  CAS  Google Scholar 

  44. Cogle CR, Wainman DA, Jorgensen ML, Guthrie SM, Mames RN, Scott EW. Adult human hematopoietic cells provide functional hemangioblast activity. Blood. 2004;103:133–5.

    PubMed  CAS  Google Scholar 

  45. Colvin JS, White AC, Pratt SJ, Ornitz DM. Lung hypoplasia and neonatal death in Fgf9-null mice identify this gene as an essential regulator of lung mesenchyme. Development. 2001;128:2095–106.

    PubMed  CAS  Google Scholar 

  46. Corpechot C, Barbu V, Chazouilleres O, Poupon R. Fetal microchimerism in primary biliary cirrhosis. J Hepatol. 2000;33:696–700.

    PubMed  CAS  Google Scholar 

  47. Damert A, Miquerol L, Gertsenstein M, Risau W, Nagy A. Insufficient VEGFA activity in yolk sac endoderm compromises haematopoietic and endothelial differentiation. Development. 2002;129:1881–92.

    PubMed  CAS  Google Scholar 

  48. Davies J. Clinicopathological conference. A case of haemolytic disease with congenital rubella demonstrated at the royal postgraduate medical school. Br Med J. 1967;2:819–22.

    Google Scholar 

  49. DeRuiter MC, Poelmann RE, VanMunsteren JC, Mironov V, Markwald RR, Gittenberger-de Groot AC. Embryonic endothelial cells transdifferentiate into mesenchymal cells expressing smooth muscle actins in vivo and in vitro. Circ Res. 1997;80:444–51.

    PubMed  CAS  Google Scholar 

  50. Deutsch V, Hubel E, Kay S, Ohayon T, Katz BZ, Many A, Zander A, Naparstek E, Grisaru D. Mimicking the haematopoietic niche microenvironment provides a novel strategy for expansion of haematopoietic and megakaryocyte-progenitor cells from cord blood. Br J Haematol. 2010;149(1):137–49.

    PubMed  Google Scholar 

  51. Digicaylioglu M, Bichet S, Marti HH, Wenger RH, Rivas L, Bauer C, Gassman M. Localization of specific erythropoietin binding sites in defined areas of the mouse brain. Proc Natl Acad Sci USA. 1995;92:3717–20.

    PubMed  CAS  Google Scholar 

  52. Dobbing J, Smart J. Vulnerability of developing brain and behaviour. Br Med Bull. 1974;30:164–8.

    PubMed  CAS  Google Scholar 

  53. Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands, and myocardium. J Embryol Exp Morphol. 1985;87:27–32.

    PubMed  CAS  Google Scholar 

  54. Donoghue JF, Lederman FL, Susil BJ, Rogers PA. Lymphangiogenesis of normal endometrium and endometrial adenocarcinoma. Hum Reprod. 2007;22:1705–13.

    PubMed  CAS  Google Scholar 

  55. Dubernard G, Aractingi S, Oster M, Rouzier R, Mathieu MC, Uzan S, Khosrotehrani K. Breast cancer stroma frequently recruits fetal derived cells during pregnancy. Breast Cancer Res. 2008;10:R14.

    PubMed  Google Scholar 

  56. Dubernard G, Oster M, Chareyre F, Antoine M, Rouzier R, Uzan S, Aractingi S, Khosrotehrani K. Increased fetal cell microchimerism in high grade breast carcinomas occurring during pregnancy. Int J Cancer. 2009;124(5):1054–9.

    PubMed  CAS  Google Scholar 

  57. Dunwoodie SL, Rodriguez TA, Beddington RS. Msg1 and Mrg1, founding members of a gene family, show distinct patterns of gene expression ­during mouse embryogenesis. Mech Dev. 1998;72:27–40.

    PubMed  CAS  Google Scholar 

  58. Dyce J, George M, Goodall H, Fleming TP. Do trophectoderm and inner cell mass cells in the mouse blastocyst maintain discrete lineages? Development. 1987;100:685–98.

    PubMed  CAS  Google Scholar 

  59. Dyer MA, Farrington SM, Mohn D, Munday JR, Baron MH. India hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neuroectodermal cell fate in the mouse embryo. Development. 2001;128:1717–30.

    PubMed  CAS  Google Scholar 

  60. Edwards RG, Beard HK. Oocyte polarity and cell determination in early mammalian embryos. Mol Hum Reprod. 1997;3:863–905.

    PubMed  CAS  Google Scholar 

  61. El-Bastawissi AY, Williams MA, Riley DE. Amniotic fluid interleukin-6 and preterm delivery: a review. Obstet Gynecol. 2000;95(6):1056–64.

    PubMed  CAS  Google Scholar 

  62. Endo Y, Negishi I, Ishikawa O. Possible contribution of microchimerism to the pathogenesis of Sjogren’s syndrome. Rheumatology. 2002;41:490–5.

    PubMed  CAS  Google Scholar 

  63. Engel SA, Olshan AF, Savitz DA. Risk of small-for-gestational-age is associated with common anti-inflammatory cytokine polymorphisms. Epidemiology. 2005;16(4):478–86.

    PubMed  Google Scholar 

  64. Engel SA, Erichsen HC, Savitz DA. Risk of spontaneous preterm birth is associated with common proinflammatory cytokine polymorphisms. Epidemiology. 2005;16(4):469–77.

    PubMed  Google Scholar 

  65. Erlebacher A, Vencato D, Price KA, Zhang D, Glimcher LH. Constraints in antigen presentation severely restrict T cell recognition of the allogeneic fetus. J Clin Invest. 2007;117:1399–411.

    PubMed  CAS  Google Scholar 

  66. Esposito C, Cornacchia F, Roberta Riboni R, Gianluca Fasoli G, Parrilla B, Scudellaro R, Villa L, Mangione F, Serpieri N, Canton AD. Feto-maternal microchimerism in glomerular cells: a possible role in lupus nephritis. Nephrol Dial Transplant. 2005;20:v197.

    Google Scholar 

  67. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154–6.

    PubMed  CAS  Google Scholar 

  68. Evans PC, Lambert N, Maloney S, Furst DE, Moore JM, Nelson JL. Long-term fetal microchimerism in peripheral blood mononuclear cell subsets in healthy women and women with scleroderma. Blood. 1999;93:2033–7.

    PubMed  CAS  Google Scholar 

  69. Fanning PA, Jonsson JR, Clouston AD, Edwards-Smith C, Balderson GA, MacDonald GA, Crawford DHG, Kerlin P, Powell LW, Powell EE. Detection of male DNA in the liver of female patients with primary biliary cirrhosis. J Hepatol. 2000;33:690–5.

    PubMed  CAS  Google Scholar 

  70. Fausto N, Lemire JM, Shiojiri N. Cell lineages in hepatic development and the identification of progenitor cells in normal and injured liver. Proc Soc Exp Biol Med. 1993;204:237–41.

    PubMed  CAS  Google Scholar 

  71. Flake AW, Roncarolo MG, Puck JM. Treatment of x-linked severe combined immunodeficiency by in utero transplantation of paternal bone marrow. N Engl J Med. 1996;335:1806–10.

    PubMed  CAS  Google Scholar 

  72. Fleming TP. A quantitative analysis of cell allocation to trophectoderm and inner cell mass in the mouse blastocyst. Dev Biol. 1987;119:520–31.

    PubMed  CAS  Google Scholar 

  73. Furuta C, Ema H, Takayanagi S, Ogaeri T, Okamura D, Matsui Y, Nakauchi H. Discordant developmental waves of angioblasts and hemangioblasts in the early gastrulating mouse embryo. Development. 2006;133:2771–9.

    PubMed  CAS  Google Scholar 

  74. Gadi VK, Nelson JL. Fetal microchimerism in women with breast cancer. Cancer Res. 2007;67:9035–8.

    PubMed  CAS  Google Scholar 

  75. Gadi VK, Malone KE, Guthrie KA, Porter PL, Nelson JL. Case control study of fetal microchimerism and breast cancer. PLoS One. 2008;3:e1706.

    PubMed  Google Scholar 

  76. Gardner RL. Investigation of cell lineage and differentiation in the extraembryonic endoderm of the mouse embryo. J Embryol Exp Morphol. 1982;68:175–98.

    PubMed  CAS  Google Scholar 

  77. Gardner L, Moffett A. Dendritic cells in the human decidua. Biol Reprod. 2003;69:1438–46.

    PubMed  CAS  Google Scholar 

  78. Gargano JW, Holzman C, Senagore P. Mid-pregnancy circulating cytokine levels, histologic chorioamnionitis and spontaneous preterm birth. J Reprod Immunol. 2008;79(1):100–10.

    PubMed  CAS  Google Scholar 

  79. Goldenberg RL, Goepfert AR, Ramsey PS. Biochemical markers for the prediction of preterm birth. Am J Obstet Gynecol. 2005;192(5 suppl):S36–46.

    PubMed  CAS  Google Scholar 

  80. Grant MB, May WS, Caballero S, Brown G, Guthrie S, Mames R, Byrne B, Vaught T, Spoerri P, Peck A, Scott EW. Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med. 2002;8:607–12.

    PubMed  CAS  Google Scholar 

  81. Gruber DF, Zucali JR, Wleklinski J, Larussa V, Mirand EA. Temporal transition in the site of rat erythropoietin production. Exp Hematol. 1977;5:399–407.

    PubMed  CAS  Google Scholar 

  82. Guettier C. Which stem cells for adult liver? Ann Pathol. 2005;25:33–44.

    PubMed  Google Scholar 

  83. Hagberg H, Mallard C, Jacobsson B. Role of cytokines in preterm labour and brain injury. BJOG. 2005;112 suppl 1:16S–8.

    Google Scholar 

  84. Hagger L. The role of the human fertilisation and embryology authority. Med Law Int. 1997;3(1):1–22.

    PubMed  CAS  Google Scholar 

  85. Hahn-Zoric M, Hagberg H, Kjellmer I. Aberrations in placental cytokine mRNA related to intrauterine growth retardation. Pediatr Res. 2002;51(2):201–6.

    PubMed  CAS  Google Scholar 

  86. Hanna J, Mandelboim O. When killers become helpers. Trends Immunol. 2007;28:201–6.

    PubMed  CAS  Google Scholar 

  87. Hansis C, Grifo JA, Krey LC. Candidate lineage marker genes in human preimplantation embryos. Reprod Biomed Online. 2005;8:577–83.

    Google Scholar 

  88. Hayashi M, Zhu K, Sagesaka T. Elevation of amniotic fluid macrophage colony-stimulating factor in normotensive pregnancies that delivered small-for-gestational-age infants. Am J Reprod Immunol. 2007;57(6):488–94.

    PubMed  CAS  Google Scholar 

  89. Hench PS. The ameliorating effect of pregnancy on chronic atropic infections, rheumatoid arthritis, fibrosititis and intermittent hydrarthrosis. Proc Staff Meet Mayo Clin. 1938;13:161–75.

    Google Scholar 

  90. Herzenberg LA, Bianchi DW, Schroder J, Cann HM, Iverson GM. Fetal cells in the blood of pregnant women: detection and enrichment by fluorescence-activated cell sorting. Proc Natl Acad Sci USA. 1979;76:1453–5.

    PubMed  CAS  Google Scholar 

  91. Hiby SE, Walker JJ, O’Shaughnessy KM, Redman CW, Carrington M, Trowsdale J, Moffett A. Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J Exp Med. 2004;200:957–65.

    PubMed  CAS  Google Scholar 

  92. Hiby SE, Regan L, Lo W, Farrell L, Carrington M, Moffett A. Association of maternal killer-cell immunoglobulin-like receptors and parental HLA-C genotypes with recurrent miscarriage. J Exp Med. 2008;23:972–6.

    CAS  Google Scholar 

  93. Hidaka M, Stanford WL, Bernstein A. Conditional requirement for the flk-1 receptor in the in vitro generation of early hematopoietic cells. Proc Natl Acad Sci USA. 1999;96:7370–5.

    PubMed  CAS  Google Scholar 

  94. His W. Lecithoblast und angioblastder wirbelthiere. Abhandl KS Ges Wis Math-Phys. 1900;22:171.

    Google Scholar 

  95. Holland E. A case of transplacental metastasis of malignant melanoma from mother to foetus. J Obstet Gynaecol Br Emp. 1949;56:529–36.

    PubMed  CAS  Google Scholar 

  96. Hollands P. Differentiation of stem cells in the mouse embryo and their use in grafting. Hum Reprod. 1985;1(Supp 1):A32.

    Google Scholar 

  97. Hollands P, Edwards RG. The fate of embryonic cells grafted into X-irradiated recipients. Hum Reprod. 1986;1(Supp 2):40.

    Google Scholar 

  98. Hollands P. Differentiation and grafting of haemopoietic stem cells from early post-implantation mouse embryos. Development. 1987;99:69–76.

    PubMed  CAS  Google Scholar 

  99. Hollands P. Differentiation of embryonic haemopoietic stem cells from mouse blastocysts grown in vitro. Development. 1988;102:135–41.

    PubMed  CAS  Google Scholar 

  100. Holmes VA, Wallace JM, Gilmore WS, McFaul P, Alexander HD. Plasma levels of the immunomodulatory cytokine interleukin-10 during normal human pregnancy: a longitudinal study. Cytokine. 2003;21:265–9.

    PubMed  CAS  Google Scholar 

  101. Holzgreve W, Ghezzi F, Dinaro E, Ganshirt D, Maymom E, Hahn S. Disturbed feto-maternal cell traffic in preeclampsia. Obstet Gynecol. 1998;91:669–72.

    PubMed  CAS  Google Scholar 

  102. Hovinga ICLK, Koopmans M, Baelde HJ, Vanderwal AM, Sijpkens YWJ, Deheer E, Bruijn JA, Bajema IM. Chimerism occurs twice as often in lupus nephritis as in normal kidneys. Arthritis Rheum. 2006;54:2944–50.

    Google Scholar 

  103. Huang SJ, Chen CP, Schatz F, Rahman M, Abrahams VM, Lockwood CJ. Pre-eclampsia is associated with dendritic cell recruitment into the uterine decidua. J Pathol. 2008;214:328–36.

    PubMed  CAS  Google Scholar 

  104. Huang HC, Wang CL, Huang LT. Association of cord blood cytokines with prematurity and cerebral palsy. Early Hum Dev. 2004;77(1–2):29–36.

    PubMed  CAS  Google Scholar 

  105. Huber TL, Kouskoff V, Fehling HJ, Palis J, Keller G. Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature. 2004;432:625–30.

    PubMed  CAS  Google Scholar 

  106. Hunt JS. Stranger in a strange land. Immunol Rev. 2006;213:36–47.

    PubMed  CAS  Google Scholar 

  107. Huppertz B, Kadyrov M, Kingdom JCP. Apoptosis and its role in the trophoblast. Am J Obstet Gynecol. 2006;195:29–39.

    PubMed  Google Scholar 

  108. Ishitani A, Sageshima N, Hatake K. The involvement of HLA E and -F in pregnancy. J Reprod Immunol. 2005;69:101–13.

    Google Scholar 

  109. Invernizzi P, Biondi M, Battezzati P, Perego F, Selmi C, Cecchini F, Podda M, Simoni G. Presence of fetal DNA in maternal plasma decades after pregnancy. Hum Genet. 2002;110:587–91.

    PubMed  CAS  Google Scholar 

  110. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418:41–9.

    PubMed  CAS  Google Scholar 

  111. Johnson MH, Ziomek CA. The foundation of two distinct cell lineages within the mouse morula. Cell. 1981;24:71–80.

    PubMed  CAS  Google Scholar 

  112. Johnson K, Nelson J, Furst D, McSweeney P, Roberts D, Zhen D, Bianchi D. Fetal cell microchimerism in tissue from multiple sites in women with systemic sclerosis. Arthritis Rheum. 2001;44:1848–54.

    PubMed  CAS  Google Scholar 

  113. Jonsson V, Tjonnfjord G, Samuelsen SO, Johannesen T, Olsen J, Sellick G, Houlston R, Yuille M, Catovsky D. Birth order pattern in the inheritance of chronic lymphocytic leukaemia and related lymphoproliferative disease. Leuk Lymphoma. 2007;48:2387–96.

    PubMed  Google Scholar 

  114. Jung J, Zheng M, Goldfarb M, Zaret KS. Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science. 1999;284:1998–2003.

    PubMed  CAS  Google Scholar 

  115. Jurisicova A, Detmar J, Caniggia I. Molecular mechanisms of trophoblast survival: from implantation to birth. Birth Defects Res C Embryo Today. 2005;75:262–80.

    PubMed  CAS  Google Scholar 

  116. Juul SE, Harcum J, Li Y, Christensen RD. Erythropoietin is present in the cerebrospinal fluid of neonates (Abstract). Pediatr Res. 1996;39:1715.

    Google Scholar 

  117. Juul SE, Li Y, Calhoun DA, Christensen RD. Erythropoietin and its receptor are expressed in the central nervous system of first and second trimester human fetuses (Abstract). Pediatr Res. 1996;39:1301.

    Google Scholar 

  118. Kammerer U, Schoppet M, McLellan AD, Kapp M, Huppertz HI, Kampgen E, Dietl J. Human decidua contains potent immunostimulatory CD83+ dendritic cells. Am J Pathol. 2000;157:159–69.

    PubMed  CAS  Google Scholar 

  119. Kanai-Azuma M, Kanai Y, Gad JM, Tajima Y, Taya C, Kurohmaru M, Sanai Y, Yonekawa H, Yazaki K, Tam PP, Hayashi Y. Depletion of definitive gut endoderm in Sox17-null mutant mice. Development. 2002;129:2367–79.

    PubMed  CAS  Google Scholar 

  120. Kaufman DS, Hanson ET, Lewis RL, Auerbach R, Thomson JA. Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci USA. 2001;98:10716–21.

    PubMed  CAS  Google Scholar 

  121. Keelan JA, Blumenstein M, Helliwell RJ. Cytokines, prostaglandins and parturition – a review. Placenta. 2003;24(suppl A):S33–46.

    PubMed  Google Scholar 

  122. Kennedy M, D’Souza S, Lynch-Kattman M, Schwantz S, Keller G. Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood. 2007;109:2679–87.

    PubMed  CAS  Google Scholar 

  123. Khosrotehrani K, Johnson KL, Lau J, Dupuy A, Cha DH, Bianchi DW. The influence of fetal loss on the presence of fetal cell microchimerism: a systematic review. Arthritis Rheum. 2003;48(11):3237–41.

    PubMed  Google Scholar 

  124. Khosrotehrani K, Johnson KL, Cha DH, Salomon RN, Bianchi DW. Transfer of fetal cells with multilineage potential to maternal tissue. JAMA. 2004;292:75–80.

    PubMed  CAS  Google Scholar 

  125. Khosrotehrani K, Bianchi DW. Multi-lineage potential of fetal cells in maternal tissue: a legacy in reverse. J Cell Sci. 2005;118:1559–63.

    PubMed  CAS  Google Scholar 

  126. Khosrotehrani K, Mery L, Aractingi S, Bianchi DW, Johnson KL. Absence of fetal cell microchimerism in cutaneous lesions of lupus erythematosus. Ann Rheum Dis. 2005;64:159–60.

    PubMed  CAS  Google Scholar 

  127. Khosrotehrani K, Reyes RR, Johnson KL, Freeman RB, Salomon RN, Peter I, Stroh H, Guegan S, Bianchi DW. Fetal cells participate over time in the response to specific types of murine maternal hepatic injury. Hum Reprod. 2007;22:654–61.

    PubMed  CAS  Google Scholar 

  128. Kinder SJ, Tsang TE, Quinlan GA, Hadjantonakis A-K, Nagy A, Tam PPL. The orderly allocation of mesodermal cells to the extraembryonic structures and the anteroposterior axis during gastrulation of the mouse embryo. Development. 1999;126:4691–701.

    PubMed  CAS  Google Scholar 

  129. King A, Burrows TD, Hiby SE, Bowen JM, Joseph S, Verma S, Lim PB, Gardner L, Le Bouteiller P, Ziegler A. Surface expression of HLA-C antigen by human extravillous trophoblast. Placenta. 2000;21:376–87.

    PubMed  CAS  Google Scholar 

  130. Klintschar M, Immel UD, Kehlen A, Schwaiger P, Mustafa T, Mannweiler S, Regauer S, Kleiber M, Hoang-Vu C. Fetal microchimerism in Hashimoto’s thyroiditis: a quantitative approach. Eur J Endocrinol. 2006;154:237–41.

    PubMed  CAS  Google Scholar 

  131. Kobayashi H, Tamatani T, Tamura T, Kusafuka J, Yamataka A, Lane GJ, Kawasaki S, Ishizaki Y, Mizuta K, KIawarasaki H, Gittes GK. Maternal microchimerism in biliary atresia. J Pediatr Surg. 2007;42:987–91.

    PubMed  Google Scholar 

  132. Kolialexi A, Tsangaris GT, Antsaklis A, Mavroua A. Rapid clearance of fetal cells from maternal ­circulation after delivery. Ann N Y Acad Sci. 2004;1022:113–8.

    PubMed  Google Scholar 

  133. Konishi Y, Chui DH, Hirose H, Kunishita T, Tabira T. Trophic effect of erythropoietin and other hematopoietic factors on central cholinergic neurons in vitro and in vivo. Brain Res. 1993;609:29–35.

    PubMed  CAS  Google Scholar 

  134. Koukourakis MI, Giatromanolaki A, Sivridis E, Simopoulos C, Gatter KC, Harris AL, Jackson DG. LYVE-1 immunohistochemical assessment of lymphangiogenesis in endometrial and lung cancer. J Clin Pathol. 2005;58:202–6.

    PubMed  CAS  Google Scholar 

  135. Kowalzick L, Artlett C, Thiss K, Baum H, Ziegler H, Mischke D, Blum R, Ponnighaus J, Quietsch J. Chronic graft-versus-host-disease-like dermopathy in a child with CD4+ cell microchimerism. Dermatology. 2005;210:68–71.

    PubMed  Google Scholar 

  136. Kuroki M, Okayama A, Nakamura S, Sasaki T, Murai K, Shiba R, Shinohara M, Tsubouchi H. Detection of maternal-fetal microchimerism in the inflammatory lesions of patients with Sjogren’s syndrome. Ann Rheum Dis. 2002;61:1041–6.

    PubMed  CAS  Google Scholar 

  137. Labarrere CA, Faulk WP. MHC class II reactivity of human villous trophoblast in chronic inflammation of unestablished etiology. Transplantation. 1990;50:812–6.

    PubMed  CAS  Google Scholar 

  138. Lacaud G, Gore L, Kennedy M, Kouskoff V, Kingsley PD, Hogan C, Carlsson L, Speck NA, Palis J, Keller G. Runx1 is essential for hematopoietic commitment at the hemangioblast stage of development in vitro. Blood. 2002;100:458–66.

    PubMed  CAS  Google Scholar 

  139. Lambert NC, Lo YM, Erickson TD, Tylee TS, Guthrie KA, Furst DE, Nelson JL. Male microchimerism in healthy women and women with scleroderma: cells or circulating DNA? A quantitative answer. Blood. 2002;100:2845–51.

    PubMed  CAS  Google Scholar 

  140. Lambert NC, Erickson TD, Yan Z, Pang JM, Guthrie KA, Furst DE, Nelson JL. Quantification of maternal microchimerism by HLA-specific real-time polymerase chain reaction: studies of healthy women and women with scleroderma. Arthritis Rheum. 2004;50:906–14.

    PubMed  CAS  Google Scholar 

  141. Lanfranchi A, Neva A, Tettoni K. In utero transplantation (iut) of parental cd34þ cells in patient affected by primary immunodeficiencies. Bone Marrow Transplant. 1998;21:S127.

    Google Scholar 

  142. Lapaire O, Holzgreve W, Oosterwijk JC, Brinkhaus R, Bianchi DW. Georg Schmorl on trophoblasts in the maternal circulation. Placenta. 2007;28:1–5.

    PubMed  CAS  Google Scholar 

  143. Laskowska M, Leszczyńska-Gorzelak B, Laskowska K. Evaluation of maternal and umbilical serum TNFa levels in preeclamptic pregnancies in the intrauterine normal and growth-restricted fetus. J Matern Fetal Neonatal Med. 2006;19(6):347–51.

    PubMed  CAS  Google Scholar 

  144. Laskowska M, Laskowska K, Leszczyńska-Gorzelak B. Comparative analysis of the maternal and umbilical interleukin-8 levels in normal pregnancies and in pregnancies complicated by preeclampsia with intrauterine normal growth and intrauterine growth retardation. J Matern Fetal Neonatal Med. 2007;20(7):527–32.

    PubMed  CAS  Google Scholar 

  145. Lau TK, Lo KWK, Chan LYS, Leung TY, Lo YMD. Cell free fetal deoxyribonucleic acid in maternal circulation as a marker of fetal-maternal hemorrhage in patients undergoing external cephalic version near term. Am J Obstet Gynecol. 2000;183:712–6.

    PubMed  CAS  Google Scholar 

  146. Lau TW, Leung TN, Chan LYS, Lau TK, Chan KCA, Tam WH, Lo YMD. Fetal DNA clearance from maternal plasma is impaired in pre-eclampsia. Clin Chem. 2002;48:2141–6.

    PubMed  CAS  Google Scholar 

  147. Lawson KA, Dunn NR, Roelen BA, Zeinstra LM, Davis AM, Wright CV, Korving JP, Hogan BL. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 1999;13:424–36.

    PubMed  CAS  Google Scholar 

  148. Lee TH, Montalvo L, Chrebtow V, Busch MP. Quantitation of genomic DNA in plasma and serum samples: higher concentrations of genomic DNA found in serum than in plasma. Transfusion. 2001;41:276–82.

    PubMed  CAS  Google Scholar 

  149. Lemaigre F, Zaret KS. Liver development update: new embryo models, cell lineage control, and morphogenesis. Curr Opin Genet Dev. 2004;14:582–90.

    PubMed  CAS  Google Scholar 

  150. Lemery DJ, Santolaya J, Serre AF, Denoix S, Besse GH, Vanlieferinghen PC, Bezou MJ, Gaillard G, Jacquetin B. Serum erythropoietin in small for gestational age fetuses. Biol Neonate. 1994;65:89–93.

    PubMed  CAS  Google Scholar 

  151. Leung TN, Zhang J, Lau TK, Hjelm NM, Lo YMD. Maternal plasma fetal DNA as a marker for preterm labour. Lancet. 1998;352:1904–5.

    PubMed  CAS  Google Scholar 

  152. Levenberg S, Golub JS, Amit M, Itskovitz-Eldor J, Langer R. Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci USA. 2002;99:4391–6.

    PubMed  CAS  Google Scholar 

  153. Li Y, Juul SE, Morris-Wiman JA, Calhoun DA, Christensen RD. Erythropoietin receptors are expressed in the central nervous system in mid-trimester human fetuses. Pediatr Res. 1996;40:376–80.

    PubMed  CAS  Google Scholar 

  154. Liapis H, Roby J, Birkland TP, Davila RM, Ritter D, Parks WC. In situ hybridization of human erythropoietin in pre- and postnatal kidneys. Pediatr Pathol Lab Med. 1995;15:875–83.

    PubMed  CAS  Google Scholar 

  155. Lim GB, Jeyaseelan K, Wintour EM. Ontogeny of erythropoietin gene expression in the sheep fetus: effect of dexamethasone at 60 days of gestation. Blood. 1994;84:460–6.

    PubMed  CAS  Google Scholar 

  156. Lin Y, Zeng Y, Di J, Zeng S. Murine CD200+ CK7+ trophoblasts in a poly (I:C)-induced embryo resorption model. Reproduction. 2005;130:529–37.

    PubMed  CAS  Google Scholar 

  157. Lo YM, Patel P, Wainscoat JS, Sampietro M, Gillmer MD, Fleming KA. Prenatal sex determination by DNA amplification from maternal peripheral blood. Lancet. 1989;2:1363–5.

    PubMed  CAS  Google Scholar 

  158. Lo YM, Patel P, Sampietro M, Gillmer MD, Fleming KA, Wainscoat JS. Detection of single-copy fetal DNA sequence from maternal blood. Lancet. 1990;335:1463–4.

    PubMed  CAS  Google Scholar 

  159. Lo YMD, Corbetta N, Chamberlain PF, Rai V, Sargent IL, Redman CWG, Wainscoat JS. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350:485–7.

    PubMed  CAS  Google Scholar 

  160. Lo Y, Tein M, Lau T, Haines C, Leung T, Poon P, Wainscoat J, Johnson P, Chang A, Hjelm N. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for non-invasive pre-natal diagnosis. Am J Hum Genet. 1998;62:768–75.

    PubMed  CAS  Google Scholar 

  161. Lo YMD, Zhang J, Leung TN, Lau TK, Chamg AMZ, Hjelm NM. Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet. 1999;64:218–24.

    PubMed  CAS  Google Scholar 

  162. Loges S, Fehse B, Brockmann MA, Lamszus K, Butzal M, Guckenbiehl M, Schuch G, Ergun S, Fischerm U, Zander A, Hossfeld DK, Fiedler W, Gehling UM. Identification of the adult human hemangioblast. Stem Cells Dev. 2004;13:229–42.

    PubMed  CAS  Google Scholar 

  163. Loubiere LS, Lambert NC, Flinn LJ, Erickson TD, Yan Z, Guthrie KA, Vickers KT, Nelson JL. Maternal microchimerism in healthy adults in lymphocytes, monocyte/macrophages and NK cells. Lab Invest. 2006;86(11):1185–92.

    PubMed  CAS  Google Scholar 

  164. Lugus JJ, Chung YS, Mills JC, Kim SI, Grass J, Kyba M, Doherty JM, Bresnick EH, Choi K. Gata2 functions at multiple steps in hemangioblast development and differentiation. Development. 2007;134(2):393–405.

    PubMed  CAS  Google Scholar 

  165. Lu S-J, Feng Q, Caballero S, Chen Y, Moore MAS, Grant MB, Lanza R. Generation of functional hemangioblasts from human embryonic stem cells. Nat Methods. 2006;6:501–9.

    Google Scholar 

  166. Mackler AM, Barber EM, Takikawa O, Pollard JW. Indoleamine 2,3-dioxygenase is regulated by IFN-g in the mouse placenta during listeria monocytogenes infection. J Immunol. 2003;170:823–30.

    PubMed  CAS  Google Scholar 

  167. Maloney S, Smith A, Furst DE, Myerson D, Rupert K, Evans PC, Nelson JL. Microchimerism of maternal origin persists into adult life. J Clin Invest. 1999;104:41–7.

    PubMed  CAS  Google Scholar 

  168. Manavalan JS, Rossi PC, Vlad G, Piazza F, Yarilina A, Cortesini R, Mancini D, Suciu-Foca N. High expression of ILT3 and ILT4 is a general feature of tolerogenic dendritic cells. Transpl Immunol. 2003;11:245–58.

    PubMed  CAS  Google Scholar 

  169. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA. 1981;78:7634–8.

    PubMed  CAS  Google Scholar 

  170. Matsumoto K, Yoshitomi H, Rossant J, Zaret KS. Liver organogenesis promoted by endothelial cells prior to vascular function. Science. 2001;294:559–63.

    PubMed  CAS  Google Scholar 

  171. McClelland R, Wauthier E, Zhang L, Melhem A, Barbier C, Reid L. Ex vivo conditions for self-­replication of human hepatic stem cells. Tissue Eng. 2008;14(4):1–11.

    Google Scholar 

  172. McClelland R, Wauthier E, Uronis J, Reid LM. Gradient in extracellular matrix chemistry from periportal to pericentral zones: regulation of hepatic progenitors. Tissue Eng. 2008;14:59–70.

    CAS  Google Scholar 

  173. McGrath H. Elective pregnancy termination and microchimerism: commenton the article by Khosrotehrani et al. Arthritis Rheum. 2004;50:3058–9.

    PubMed  Google Scholar 

  174. Medawar PB. Some immunological andendocrinological problems raised by the evolution of viviparity in vertebrates. Symp Soc Exp Biol. 1954;7:320.

    Google Scholar 

  175. Medvinsky A, Dzierzak E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell. 1996;86:897–906.

    PubMed  CAS  Google Scholar 

  176. Meilhac SM, Adams RJ, Morris SA, Danckaert A, Le Garrec JF, Zernicka-Goetz M. Active cell movements coupled to positional induction are involved in lineage segregation in the mouse blastocyst. Dev Biol. 2009;331(2):210–21.

    PubMed  CAS  Google Scholar 

  177. Mendelson CR. Role of transcription factors in fetal lung development and surfactant protein gene expression. Annu Rev Physiol. 2000;62:875–915.

    PubMed  CAS  Google Scholar 

  178. Mijares-Boeckh-Behrens T, Selva-O’Callaghan A, Solans-Laque R, Bosch-Gil J, Vilardell-Tarres M, Balada-Prades E, Kuwana M, Ogawa Y, Toda I. Fetal microchimerism in Sjögren’s syndrome. Ann Rheum Dis. 2001;60:897–8.

    PubMed  CAS  Google Scholar 

  179. Min H, Danilenko DM, Scully SA, Bolon B, Ring BD, Tarpley JE, DeRose M, Simonet WS. Fgf-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless. Genes Dev. 1998;12:3156–61.

    PubMed  CAS  Google Scholar 

  180. Miyazaki S, Tsuda H, Sakai M, Hori S, Sasaki Y, Futatani T, Miyawaki T, Saito S. Predominance of Th2-promoting dendritic cells in early human pregnancy decidua. J Leukoc Biol. 2003;74:514–22.

    PubMed  CAS  Google Scholar 

  181. Moldenhauer LM, Hayball JD, Robertson SA. Conceptus antigens activate the maternal immune response in pregnancy utilising maternal antigen presenting cells. J Reprod Immunol. 2006;71:148–55.

    Google Scholar 

  182. Montfort MJ, Olivares CR, Mulcahy JM, Fleming WH. Adult blood vessels restore host hematopoiesis following lethal irradiation. Exp Hematol. 2002;30:950–6.

    PubMed  Google Scholar 

  183. Morris SA, Teo RTY, Li H, Robson P, Glover DM, Zernicka-Goetz M. Origin and formation of the first two distinct cell types of the inner cell mass in the mouse embryo. Proc Natl Acad Sci USA. 2010;107:6364–9.

    PubMed  CAS  Google Scholar 

  184. Mosca M, Curcio M, Lapi S, Valentini G, D’Angelo S, Rizzo G, Bombardieri S. Correlations of Y chromosome microchimerism with disease activity in patients with SLE: analysis of preliminary data. Ann Rheum Dis. 2003;62:651–4.

    PubMed  CAS  Google Scholar 

  185. Muglia LJ, Bae DS, Brown TT, Vogt SK, Alvarez JG, Sunday ME, Majzoub JA. Proliferation and differentiation defects during lung development in corticotropin-releasing hormone-deficient mice. Am J Respir Cell Mol Biol. 1999;20:181–8.

    PubMed  CAS  Google Scholar 

  186. Murphy SP, Choi JC, Holtz R. Regulation of major histocompatibility complex class II gene expression in trophoblast cells. Reprod Biol Endocrinol. 2004;2:52–60.

    PubMed  Google Scholar 

  187. Murphy SP, Tayade C, Ashkar AA. Interferon gamma in successful pregnancies. Biol Reprod. 2009;80(5):848–59.

    PubMed  CAS  Google Scholar 

  188. Nakano T, Kodama H, Honjo T. In vitro development of primitive and definitive erythrocytes from different precursors. Science. 1996;272:722–4.

    PubMed  CAS  Google Scholar 

  189. Nava S, Westgren M, Jaksch M, Tibell A, Broome U, Ericzon BG. Characterization of cells in the developing human liver. Differentiation. 2005;73:249–60.

    PubMed  CAS  Google Scholar 

  190. Nelson JL, Hughes KA, Smith AG, Nisperos BB, Branchaud AM, Hansen JA. Maternal-fetal disparity in HLA class II alloantigens and the pregnancy-induced amelioration of rheumatoid arthritis. N Engl J Med. 1993;329:466–71.

    PubMed  CAS  Google Scholar 

  191. Nelson JL. Maternal-fetal immunology and autoimmune disease: is some autoimmune disease auto-­alloimmune or allo-autoimmune? Arthritis Rheum. 1996;39:191–4.

    PubMed  CAS  Google Scholar 

  192. Nelson JL, Furst DE, Maloney S, Gooley T, Evans PC, Smith A, Bean MA, Ober C, Bianchi DW. Microchimerism and HLA-compatible relationships of pregnancy in scleroderma. Lancet. 1998;351:559–62.

    PubMed  CAS  Google Scholar 

  193. Nesin M, Cunningham-Rundles S. Cytokines and neonates. Am J Perinatol. 2000;17(8):393–404.

    PubMed  CAS  Google Scholar 

  194. Nishikawa S-I, Nishikawa S, Hirashima M, Matsuyoshi N, Kodama H. Progressive lineage analysis by cell sorting and culture identifies FLK1  +  VE-cadherin  +  cells at a diverging point of endothelial and hemopoietic lineages. Development. 1998;125:1747–57.

    PubMed  CAS  Google Scholar 

  195. Ødegard RA, Vatten LJ, Nilsen ST. Umbilical cord plasma interleukin-6 and fetal growth restriction in pre-eclampsia: a prospective study in Norway. Obstet Gynecol. 2001;98(2):289–94.

    PubMed  Google Scholar 

  196. O’Donoghue K, Chan J, de la Fuente J, Kennea N, Sandison A, Anderson JR, Roberts IA, Fisk NM. Microchimerism in female bonemarrow and bone decades after fetal mesenchymal stem-cell trafficking in pregnancy. Lancet. 2004;364:179–82.

    PubMed  Google Scholar 

  197. Ohls RK. The erythropoietin gene is expressed in midtrimester human kidney (Abstract). Blood. 1996;88 Suppl 1:566.

    Google Scholar 

  198. Orsi NM, Tribe RM. Cytokine networks and the regulation of uterine function in pregnancy and parturition. J Neuroendocrinol. 2008;20(4):462–9.

    PubMed  CAS  Google Scholar 

  199. Ostensen ME, Nelson JL. Pregnancy. In: Clair ES, Pisetsky D, Hayes B, editors. Rheumatoid arthritis. Philadelphia: Lippincott Williams Wilkins; 2004. p. 496–503.

    Google Scholar 

  200. Ostlund E, Tally M, Fried G. Transforming growth factor-b1 infetal serum correlates with insulin-like growth factor-I and fetal growth. Obstet Gynecol. 2002;100(3):567–73.

    PubMed  CAS  Google Scholar 

  201. Park C, Afrikanova I, Chung YS, Zhang WJ, Arentson E, Fong GH, Rosendahl A, Choi K. A hierachiacal order of factors in the generation of FLK1- and SCL-expressing hematopoietic and endothelial progenitors from embryonic stem cells. Development. 2004;131:2749–62.

    PubMed  CAS  Google Scholar 

  202. Park JS, Park CW, Lockwood CJ. Role of cytokines in preterm labor and birth. Minerva Ginecol. 2005;57(4):349–66.

    PubMed  CAS  Google Scholar 

  203. Pedersen RA, Wu K, Bałakier H. Origin of the inner cell mass in mouse embryos: cell lineage analysis by microinjection. Dev Biol. 1986;117:581–95.

    PubMed  CAS  Google Scholar 

  204. Pedersen IB, Laurberg P, Knudsen N, Jorgensen T, Perrild H, Ovesen L, Rasmussen LB. Lack of association between thyroid autoantibodies and parity in a population study argues against microchimerism as a trigger of thyroid autoimmunity. Eur J Endocrinol. 2006;154:39–45.

    CAS  Google Scholar 

  205. Peschle A. Human ontogenic development: studies on the hemopoietic system and the expression of homeo box genes. Ann NY Acad Sci. 1987;511:101–16.

    PubMed  CAS  Google Scholar 

  206. Petroff MG. Immune interactions at the maternal-fetal interface. J Reprod Immunol. 2005;68:1–13.

    PubMed  CAS  Google Scholar 

  207. Plusa B, Piliszek A, Frankenberg S, Artus J, Hadjantonakis AK. Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development. 2008;135:3081–91.

    PubMed  CAS  Google Scholar 

  208. Potter JF. Metastasis of maternal cancer to placenta and fetus. Am J Obstet Gynecol. 1969;105:645.

    PubMed  CAS  Google Scholar 

  209. Potter JF, Schoeneman M. Metastasis of maternal cancer to the placenta and fetus. Cancer. 1970;25:380–8.

    PubMed  CAS  Google Scholar 

  210. Qiu Q, Yang M, Tsang BK, Gruslin A. Fas ligand expression by maternal decidual cells is negatively correlated with the abundance of leukocytes present at the maternal-fetal interface. J Reprod Immunol. 2005;65:121–32.

    PubMed  CAS  Google Scholar 

  211. Qu XB, Pan J, Zhang C, Huang SY. Sox17 facilitates the differentiation of mouse embryonic stem cells into primitive and definitive endoderm in vitro. Dev Growth Differ. 2008;50:585–93.

    PubMed  CAS  Google Scholar 

  212. Ranella A, Vassiliadi S, Mastora C, Valentina M, Dionyssopoulou E, Athanassaki I. Constitutive intracellular expression of human leukocyte antigen (HLA)-DO and HLA-DR but not HLA-DM in trophoblast cells. Hum Immunol. 2005;66:43–55.

    PubMed  CAS  Google Scholar 

  213. Red-Horse K, Rivera J, Schanz A, Zhou Y, Winn V, Kapidzi M, Maltepe E, Okazaki K, Kochman R, Vo KC. Cytotrophoblast induction of arterial apoptosis and lymphangiogenesis in an in vivo model of human placentation. J Clin Invest. 2006;116:2643–52.

    PubMed  CAS  Google Scholar 

  214. Reed AM, Picornell YJ, Harwood A, Kredish DW. Chimerism in children with juvenile dermatomyositis. Lancet. 2000;356:2156.

    PubMed  CAS  Google Scholar 

  215. Renne C, Ramos Lopez E, Steimle-Grauer SA, Ziolkowski P, Pani MA, Luther C, Holzer K, Encke A, Wahl RA, Bechstein WO, Usadel KH, Hansmann ML, Badenhoop K. Thyroid fetal male microchimerisms in mothers with thyroid disorders: presence of Y-chromosomal immunofluorescence in thyroid-infiltrating lymphocytes is more prevalent in Hashimoto’s thyroiditis and Graves’ disease than in follicular adenomas. J Clin Endocrinol Metab. 2004;89:5810–4.

    PubMed  CAS  Google Scholar 

  216. Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest. 2002;109:337–46.

    PubMed  CAS  Google Scholar 

  217. Rieger L, Honig A, Sutterlin M, Kapp M, Dietl J, Ruck P, Kammerer U. Antigen presenting cells in human endometrium during the menstrual cycle compared to early pregnancy. J Soc Gynecol Investig. 2004;11:488–93.

    PubMed  CAS  Google Scholar 

  218. Robertson SM, Kennedy M, Shannon JM, Keller G. A transitional stage in the commitment of mesoderm to hematopoiesis requiring the transcription factor SCL/tal1. Development. 2000;127:2447–59.

    PubMed  CAS  Google Scholar 

  219. Robertson SA, Ingman WV, O’Leary S, Sharkey DJ, Tremellen KP. Transforming growth factor beta – a mediator of immune deviation in seminal plasma. J Reprod Immunol. 2002;57:109–28.

    PubMed  CAS  Google Scholar 

  220. Rollini P, Kaiser S, Faes-van’t Hull E. Long-term expansion of transplantable human fetal liver hematopoietic stem cells. Blood. 2004;103:1166–70.

    PubMed  CAS  Google Scholar 

  221. Rossant J, Chazaud C, Yamanaka Y. Lineage allocation and asymmetries in the early mouse embryo. Philos Trans R Soc Lond B Biol Sci. 2003;358(1436):1341–8.

    PubMed  CAS  Google Scholar 

  222. Ruebner BH, Blankenberg TA, Burrows DA, SooHoo W, Lund JK. Development and transformation of the ductal plate in the developing human liver. Pediatr Pathol. 1990;10:55–68.

    PubMed  CAS  Google Scholar 

  223. Sabin FR. Studies on the origin of blood vessels and of red corpuscles as seen in the living blastoderm of chicks during the second day of incubation. Contrib Embryol. 1920;9:213–62.

    Google Scholar 

  224. Sainz J, Al Haj Zen A, Caligiuri G, Demerens C, Urbain D, Lemitre M, Lafont A. Isolation of ‘side population’ progenitor cells from healthy arteries of adult mice. Arterioscler Thromb Vasc Biol. 2006;26:281–6.

    PubMed  CAS  Google Scholar 

  225. Scaletti C, Vultaggio A, Bonifacio S, Emmi L, Torricelli F, Maggi E, Romagnani S, Piccinni MP. Th2-oriented profile of male offspring T cells present in women with systemic sclerosis and reactive with maternal major histocompatibility complex antigens. Arthritis Rheum. 2002;46:445–50.

    PubMed  CAS  Google Scholar 

  226. Schatteman GC, Hanlon HD, Jiao C, Dodds SG, Christy BA. Blood derived angioblasts accelerate blood-flow restoration in diabetic mice. J Clin Invest. 2000;106:571–8.

    PubMed  CAS  Google Scholar 

  227. Schatteman GC, Awad O. Hemangioblasts, angioblasts, and adult endothelial cell progenitors. Anat Rec. 2004;276A:13–21.

    Google Scholar 

  228. Schmelzer E, Wauthier E, Reid LM. Phenotypes of pluripotent human hepatic progenitors. Stem Cell. 2006;24:1852–8.

    CAS  Google Scholar 

  229. Schmelzer E, Zhang L, Bruce A, Ludlow J, Yao H, Moss N, Melhem A, McClelland R, Turner W, Kulik M, Sherwood S, Tallheden T, Cheng N, Furth ME, Reid LM. Human hepatic stem cells from fetal and postnatal donors. J Exp Med. 2007;204:1973–87.

    PubMed  CAS  Google Scholar 

  230. Schmitt RM, Bruyns E, Snodgrass HR. Hematopoietic development of embryonic stem cells in vitro: cytokine and receptor gene expression. Genes Dev. 1991;5:728–40.

    PubMed  CAS  Google Scholar 

  231. Schmorl CG. Pathologisch-anatomische Untersuc­hungen uber Puerperal-Eklampsie. Leipzig: Verlag FCW Vogel; 1893.

    Google Scholar 

  232. Schoniger-Hekele M, Muller C, Ackermann J, Drach J, Wrba F, Penner E, Ferenci P. Lack of evidence for involvement of fetal microchimerism in pathogenesis of primary biliary cirrhosis. Dig Dis Sci. 2002;47:1909–14.

    PubMed  Google Scholar 

  233. Schuh AC, Faloon P, Hu Q-L, Bhimani M, Choi K. In vitro hematopoietic and endothelial potential of flk-1−/− embryonic stem cells and embryos. Proc Natl Acad Sci USA. 1999;96:2159–64.

    PubMed  CAS  Google Scholar 

  234. Seavey MM, Mosmann TR. Paternal antigen-bearing cells transferred during insemination do not stimulate anti-paternal CD8+ T cells: role of estradiol in locally inhibiting CD8+ T cell responses. J Immunol. 2006;177:7567–78.

    PubMed  CAS  Google Scholar 

  235. Sekine K, Ohuchi H, Fujiwara M, Yamasaki M, Yoshizawa T, Sato T, Yagishita N, Matsui D, Koga Y, Itoh N, Kato S. Fgf10 is essential for limb and lung formation. Nat Genet. 1999;21:138–41.

    PubMed  CAS  Google Scholar 

  236. Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC. Failure of blood-island formation and vasculogenesis in Flk-1 deficient mice. Nature. 1995;376:62–6.

    PubMed  CAS  Google Scholar 

  237. Shao L, Jacobs AR, Johnson VV, Mayer L. Activation of CD8+ regulatory T cells by human placental trophoblasts. J Immunol. 2005;174:7539–47.

    PubMed  CAS  Google Scholar 

  238. Shimoda M, Kanai-Azuma M, Hara K, Miyazaki S, Kanai Y, Monden M, Miyazaki J. Sox17 plays a substantial role in late-stage differentiation of the extraembryonic endoderm in vitro. J Cell Sci. 2007;120:3859–69.

    PubMed  CAS  Google Scholar 

  239. Shiojiri N, Lemire JM, Fausto N. Cell lineages and oval cell progenitors in rat liver development. Cancer Res. 1991;51:2611–20.

    PubMed  CAS  Google Scholar 

  240. Shiojiri N, Inujima S, Ishikawa K, Terada K, Mori M. Cell lineage analysis during liver development using the spf(ash)-heterozygous mouse. Lab Invest. 2001;81:17–25.

    PubMed  CAS  Google Scholar 

  241. Shuhaila A, Rohaizak M, Phang KS, Mahdy ZA. Maternal melanoma with placental metastasis. Singapore Med J. 2008;49(3):e71–2.

    PubMed  CAS  Google Scholar 

  242. Sicklick JK, Li YX, Melhem A, Schmelzer E, Zdanowicz M, Huang J, Caballero M, Fair JH, Ludlow JW, McClelland RE, Reid LM, Diehl AM. Hedgehog signaling maintains resident hepatic progenitors throughout life. Am J Physiol Gastroenterol Liver Physiol. 2006;290:G859–70.

    CAS  Google Scholar 

  243. Simmons DG, Cross JC. Determinants of trophoblast lineage and cell subtype specification in the mouse placenta. Dev Biol. 2005;284:12–24.

    PubMed  CAS  Google Scholar 

  244. Simpson E. A historical perspective on immunological privilege. Immunol Rev. 2006;213:12–22.

    PubMed  Google Scholar 

  245. Spong CY, Scherer DM, Ghidini A. Midtrimester amniotic fluid tumor necrosis factor-alpha does not predict small-for-gestational-age infants. Am J Reprod Immunol. 1997;37(3):236–9.

    PubMed  CAS  Google Scholar 

  246. Srivatsa B, Srivatsa S, Johnson KL, Samura O, Lee SL, Bianchi DW. Microchimerism of presumed fetal origin in thyroid specimens from women: a case–control study. Lancet. 2001;358:2034–8.

    PubMed  CAS  Google Scholar 

  247. Stamatoyannopoulos G, Constantoulakis P, Brice M, Kurachi S, Papayannopoulou T. Coexpression of embryonic, fetal, and adult globins in erythroid cells of human embryos: relevance to the cell-lineage models of globin switching. Dev Biol. 1987;123:191–7.

    PubMed  CAS  Google Scholar 

  248. Steinbrink K, Paragnik L, Jonuleit H, Tuting T, Knop J, Enk AH. Induction of dendritic cell maturation and modulation of dendritic cell-induced immune responses by prostaglandins. Arch Dermatol Res. 2000;292:437–45.

    PubMed  CAS  Google Scholar 

  249. Steptoe PC, Edwards RG. Birth after the reimplantation of a human embryo. Lancet. 1978;2(8085):366.

    PubMed  CAS  Google Scholar 

  250. Stevens AM, Hermes HM, Rutledge JC, Buyon JP, Nelson JL. Myocardial-tissue-specific phenotype of maternal microchimerism in neonatal lupus congenital heart block. Lancet. 2003;362:1617–23.

    PubMed  Google Scholar 

  251. Stevens AM, McDonnell WM, Mullarkey ME, Pang JM, Leisenring W, Nelson JL. Liver biopsies from human females contain male hepatocytes in the absence of transplantation. Lab Invest. 2004;84:1603–9.

    PubMed  Google Scholar 

  252. Stevens AM, Hermes HM, Lambert NC, Nelson JL, Meroni PL, Cimaz R. Maternal and sibling microchimerism in twins and triplets discordant for neonatal lupus syndrome-congenital heart block. Rheumatology. 2005;44:187–91.

    PubMed  CAS  Google Scholar 

  253. Stonek F, Bentz EK, Hafner E. A tumor necrosis factor alpha promoter polymorphism and pregnancy complications: results of a prospective cohort study in 1652 pregnant women. Reprod Sci. 2007;14(5):425–9.

    PubMed  CAS  Google Scholar 

  254. Stonek F, Metzenbauer M, Hafner E. Interleukin 6–174 G/C promoter polymorphism and pregnancy complications: results of a prospective cohort study in 1626 pregnant women. Am J Reprod Immunol. 2008;59(4):347–51.

    PubMed  CAS  Google Scholar 

  255. Stonek F, Metzenbauer M, Hafner E. Interleukin-10-1082 G/A promoter polymorphism and pregnancy complications: results of a ­prospective cohort study in 1,616 pregnant women. Acta Obstet Gynecol Scand. 2008;87(4):430–3.

    PubMed  Google Scholar 

  256. Suen PM, Leung PS. Pancreatic stem cells: a glimmer of hope for diabetes? JOP. 2005;6:422–4.

    PubMed  Google Scholar 

  257. Sun HB, Zhu YX, Yin T, Sledge G, Yang YC. MRG1, the product of a melanocyte-specific gene related gene, is a cytokine inducible transcription factor with transformation activity. Proc Natl Acad Sci USA. 1998;95:13555–60.

    PubMed  CAS  Google Scholar 

  258. Suskind DL, Rosenthal P, Heyman MB, Kong D, Magrane G, Baxter-Lowe LA, Muench MO. Maternal microchimerism in the livers of patients with biliary atresia. BMC Gastroenterol. 2004;4:14.

    PubMed  Google Scholar 

  259. Swinkels DW, Dekok JB, Hendriks JCM, Wiegerinck E, Zusterzeel PLM, Steegers EAP. Hemolysis, elevated liver enzymes, and low platelet count (HELLP) syndrome as a complication of pre-eclampsia in pregnant women increases the amount of cell-free fetal and maternal DNA in maternal plasma and serum. Clin Chem. 2002;48:650–3.

    PubMed  CAS  Google Scholar 

  260. Tan XW, Liao H, Sun L. Fetal microchimerism in the maternal mouse brain: a novel population of fetal progenitor or stem cells able to cross the blood–brain barrier? Stem Cells. 2005;23:1443–52.

    PubMed  CAS  Google Scholar 

  261. Tanaka A, Lindor K, Gish R, Batts K, Shiratori Y, Omata M, Nelson JL, Ansari A, Coppel R, Newsome M, Gershwin ME. Fetal microchimerism alone does not contribute to the induction of primary biliary cirrhosis. Hepatology. 1999;30:833–8.

    PubMed  CAS  Google Scholar 

  262. Tarasenko YI, Yu Y, Jordan PM. Effect of growth factors on proliferation and phenotypic differentiation of human fetal neural stem cells. J Neurosci Res. 2004;78:625–36.

    PubMed  CAS  Google Scholar 

  263. Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay RDG. New cell lines from mouse epiblast share defining feautres with human embryonic stem cells. Nature. 2007;448:196–202.

    PubMed  CAS  Google Scholar 

  264. Theise ND, Saxena R, Portmann BC, Thung SN, Yee H, Chiriboga L. The canals of Hering and hepatic stem cells in humans. Hepatology. 1999;30:1425–33.

    PubMed  CAS  Google Scholar 

  265. Thomas RM, Canning CE, Cotes PM, Linch DC, Rodeck CH, Rossiter CE, Huehns ER. Erythropoietin and cord blood haemoglobin in the regulation of human fetal erythropoiesis. J Obstet Gynaecol Res. 1983;90:795–800.

    CAS  Google Scholar 

  266. Thomas MR, Williamson R, Craft I, Yazdani N, Rodeck CH. Y chromosome sequence DNA amplified from peripheral blood of women in early pregnancy. Lancet. 1994;343:413–4.

    PubMed  CAS  Google Scholar 

  267. Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Becker RA, Hearn JP. Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci USA. 1995;92:7844–8.

    PubMed  CAS  Google Scholar 

  268. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    PubMed  CAS  Google Scholar 

  269. Thorsen P, Schendel DE, Deshpande AD. Identification of biological/biochemical marker(s) for preterm delivery. Paediatr Perinat Epidemiol. 2001;15 suppl 2:90–103.

    PubMed  Google Scholar 

  270. Toda I, Kuwana M, Tsubota K, Kawakami Y. Lack of evidence for an increased microchimerism in the circulation of patients with Sjogren’s syndrome. Ann Rheum Dis. 2001;60:248–53.

    PubMed  CAS  Google Scholar 

  271. Touraine JL, Raudrant D, Royo C. In-utero transplantation of stem cells in bare lymphocyte syndrome. Lancet. 1989;1:1382.

    PubMed  CAS  Google Scholar 

  272. Touraine JL, Raudrant D, Vullo C, Frappaz D, Freycon F, Rebaud A, Barbier F, Roncarolo MG, Gebuhrer L, Bétuel H. New developments in stem cell transplantation with special reference to the first in utero transplants in humans. Bone Marrow Transplant. 1991;7 Suppl 3:92–7.

    PubMed  Google Scholar 

  273. Turner WS, Seagle C, Galanko J, Favorov O, Prestwich GD, Macdonald JM. Metabolomic footprinting of human hepatic stem cells and hepatoblasts cultured in engineered hyaluronan-matrix hydrogel scaffolds. Stem Cell. 2008;26:1547–55.

    CAS  Google Scholar 

  274. Tyndall A, Gratwohl A. Microchimerism: friend or foe? Nat Med. 1998;4:386–8.

    PubMed  CAS  Google Scholar 

  275. Val P, Martinez-Barbera JP, Swain A. Adrenal development is initiated by Cited2 and Wt1 through modulation of Sf-1 dosage. Development. 2007;134(12):2349–58.

    PubMed  CAS  Google Scholar 

  276. Van Wijk IJ, De Hoon AC, Jurhawan R, Tjoa ML, Griffioen S, Mulders MAM, Van Vugt JMG, Oudejans CBM. Detection of apoptotic fetal cells in plasma of pregnant women. Clin Chem. 2000;46:729–31.

    PubMed  Google Scholar 

  277. Vicovac L, Jankovic M, Cuperlovic M. Galectin-1 and −3 in cells of the first trimester placental bed. Hum Reprod. 1998;13:730–5.

    PubMed  CAS  Google Scholar 

  278. Walsh JP, Bremner AP, Bulsara MK, O’Leary P, Leedman PJ, Feddema P, Michelangeli V. Parity and the risk of autoimmune thyroid disease: a community-based study. J Clin Endocrinol Metab. 2005;90:5309–12.

    PubMed  CAS  Google Scholar 

  279. Wang L, Li L, Shojaei F, Levac K, Cerdan C, Menendez P, Martin T, Rouleau A, Bhatia M. Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity. 2004;21:31–41.

    PubMed  CAS  Google Scholar 

  280. Wang C, Faloon P, Tan Z, Lv Y, Zhang P, Ge Y, Deng HK, Xiong J-W. Mouse Lycat controls the development of hematopoietic and endothelial lineages during in vitro embryonic stem cell differentiation. Blood. 2007;110:3601–9.

    PubMed  CAS  Google Scholar 

  281. Warburton D, Bellusci S, Del Moral PM, Kaartinen V, Lee M, Tefft D, Shi W. Growth factor signaling in lung morphogenetic centers: automaticity, stereotypy and symmetry. Respir Res. 2003;4:5–11.

    PubMed  Google Scholar 

  282. Weninger WJ, Floro KL, Bennett MB, Withington SL, Preis JI, Barbera JP, Mohun TJ, Dunwoodie SL. Cited2 is required both for heart morphogenesis and establishment of the left–right axis in mouse development. Development. 2005;132:1337–48.

    PubMed  CAS  Google Scholar 

  283. Westgren M, Ringden O, Bartmann P. Prenatal t-cell reconstitution after in utero transplantation with fetal liver cells in a patient with x-linked severe combined immunodeficiency. Am J Obstet Gynecol. 2002;187:475–82.

    PubMed  Google Scholar 

  284. Winnier G, Blessing M, Labosky PA, Hogan BLM. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 1995;9:2105–16.

    PubMed  CAS  Google Scholar 

  285. Wood WG. Haemoglobin synthesis during human fetal development. Br Med Bull. 1976;32:282–7.

    PubMed  CAS  Google Scholar 

  286. Yamaguchi TP, Dumont DJ, Conlon RA, Breitman ML, Rossant J. Flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development. 1993;118:489–98.

    PubMed  CAS  Google Scholar 

  287. Yan Z, Lambert NC, Guthrie KA, Porter AJ, Loubiere LS, Madeleine MM, Stevens AM, Hermes HM, Nelson JL. Male microchimerism in women without sons: quantitative assessment and correlation with pregnancy history. Am J Med. 2005;118:899–906.

    PubMed  Google Scholar 

  288. Yan Z, Lambert NC, Østensen M, Adams KM, Guthrie KA, Nelson JL. Prospective study of fetal DNA in serum and disease activity during pregnancy in women with inflammatory arthritis. Arthritis Rheum. 2006;54:2069–73.

    PubMed  CAS  Google Scholar 

  289. Yokota H, Goldring MB, Sun HB. CITED2-mediated regulation of MMP-1 and MMP-13 in human chondrocytes under flow shear. J Biol Chem. 2003;278:47275–80.

    PubMed  CAS  Google Scholar 

  290. Zambidis ET, Peault B, Park TS, Bunz F, Civin CI. Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development. Blood. 2005;106:860–70.

    PubMed  CAS  Google Scholar 

  291. Zafonte BT, Liu S, Lynch-Kattman M, Torregroza I, Benvenuto L, Kennedy M, Keller G, Evans T. Smad1 expands the hemangioblast population within a limited development window. Blood. 2007;109:516–23.

    PubMed  CAS  Google Scholar 

  292. Zanjani ED, Ascensao JL. Erythropoietin. Transfusion. 1989;29:47–57.

    Google Scholar 

  293. Zaret KS. Regulatory phases of early liver development: paradigms of organogenesis. Nat Rev Genet. 2002;3:499–512.

    PubMed  CAS  Google Scholar 

  294. Zhong XY, Laivuori H, Livingston JC, Ylikorkala O, Sibai BM, Holzgreve W, Hahn S. Elevation of both maternal and fetal extracellular circulating deoxyribonucleic acid concentrations in the plasma of pregnant women with pre-eclampsia. Am J Obstet Gynecol. 2001;184:414–9.

    PubMed  CAS  Google Scholar 

  295. Zhong XY, Holzgreve W, Hahn S. Direct quantification of fetal cells in maternal blood by real-time PCR. Prenat Diagn. 2006;26:850–4.

    PubMed  CAS  Google Scholar 

  296. Zwaka TP, Thomson JA. A germ cell origin of embryonic stem cells? Development. 2005;132:227–33.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Hollands .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Hollands, P. (2013). Embryology of Fetal Tissue. In: Bhattacharya, N., Stubblefield, P. (eds) Human Fetal Tissue Transplantation. Springer, London. https://doi.org/10.1007/978-1-4471-4171-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4171-6_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4170-9

  • Online ISBN: 978-1-4471-4171-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics