Skip to main content

Human Heterotopic Fetal Cardiac Tissue Transplant in Patients with Varying Degrees of Cardiomyopathy with Ischemic Heart Disease and Diabetes Mellitus: A Report of 7 Cases

  • Chapter
  • First Online:
Human Fetal Tissue Transplantation

Abstract

Cardiomyopathy is a difficult condition of the heart muscle when the cardiac cells lose their specialized function and behave like normal muscle. The causes could be extrinsic factors or secondary factors, for instance, drugs (alcohol and others), endocrine, inflammatory, metabolic, nutritional, neuromuscular, and autoimmune, acting either singly or in combination, affecting the myocardium. The other cause is intrinsic (primary), where the problem lies with the functioning of the cardiac muscles itself, with predisposition of genetic (a heritable 25-base pair [bp] deletion from the gene coding for cardiac myosin-binding protein-C (MYBPC3) is associated with various MYBPC3 mutations which predisposes cardiac diseases), acquired, or mixed etiology. From the functional point of view, it could be of a dilated variety, a restrictive variety, and an obstructive variety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sivasankaran S. Restrictive cardiomyopathy in India: the story of a vanishing mystery: global burden of cardiovascular disease. Heart. 2009;95:9–14. doi:10.1136/hrt.2008.148437.

    Article  PubMed  CAS  Google Scholar 

  2. Henning RJ. Stem cells in cardiac repair. Future Cardiol. 2011;7(1):99–117.

    Article  PubMed  Google Scholar 

  3. Tang XL, Rokosh G, Sanganalmath SK, Yuan F, Sato H, Mu J, Dai S, Li C, Chen N, Peng Y, Dawn B, Hunt G, Leri A, Kajstura J, Tiwari S, Shirk G, Anversa P, Bolli R. Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation. 2010; 121(2):293–305.

    Article  PubMed  Google Scholar 

  4. Emanueli C, Lako M, Stojkovic M, Madeddu P. In search of the best candidate for regeneration of ischemic tissues: are embryonic/fetal stem cells more advantageous than adult counterparts? Thromb Haemost. 2005;94(4):738–49.

    PubMed  Google Scholar 

  5. Djouad F, Bouffi C, Ghannam S, Noël D, Jorgensen C. Mesenchymal stem cells: innovative therapeutic tools for rheumatic diseases. Nat Rev Rheumatol. 2009;5(7):392–9.

    Article  PubMed  CAS  Google Scholar 

  6. Fonarow GC, Srikanthan P. Diabetic cardiomyopathy. Endocrinol Metab Clin North Am. 2006;35(3):575–99, ix. doi:10.1016/j.ecl.2006.05.003.

  7. Moir S, Hanekom L, Fang ZY, et al. Relationship between myocardial perfusion and dysfunction in diabetic cardiomyopathy: a study of quantitative contrast echocardiography and strain rate imaging. Heart. 2006;92(10):1414–9. doi:10.1136/hrt.2005.079350.

    Article  PubMed  CAS  Google Scholar 

  8. Ungar I, Gilbert M, Siegel A, Blain JM, Bing RJ. Studies on myocardial metabolism. IV. Myocardial metabolism in diabetes. Am J Med. 1955;18(3):385–96. doi:10.1016/0002-9343(55)90218-7. http://linkinghub.elsevier.com/retrieve/pii/0002-9343(55)90218-7.

    Google Scholar 

  9. Bing RJ, Siegel A, Ungar I, Gilbert M. Metabolism of the human heart: II. Studies on fat, ketone and amino acid metabolism. Am J Med. 1954;16(4):504–15. doi:10.1016/0002-9343(54)90365-4.

    Article  PubMed  CAS  Google Scholar 

  10. Li RK, Jia ZQ, Weisel RD, et al. Cardiomyocyte transplantation improves heart function. Ann Thorac Surg. 1996;62:654–61.

    Article  PubMed  CAS  Google Scholar 

  11. Tomita S, Li RK, Weisel RD, et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation. 1999;100:II247–56.

    Article  PubMed  CAS  Google Scholar 

  12. Distler JH, Hirth A, Kurowska-Stolarska M, Gay RE, Gay S, Distler O. Angiogenic and angiostatic factors in the molecular control of angiogenesis. Q J Nucl Med. 2003;47:149–61.

    PubMed  CAS  Google Scholar 

  13. Brogi E, Wu T, Namiki A, Isner JM. Indirect ­angiogenic cytokines upregulate VEGF and bFGF gene expression in vascular smooth muscle cells, whereas hypoxia upregulates VEGF expression only. Circulation. 1994;90:649–52.

    Article  PubMed  CAS  Google Scholar 

  14. Nicosia RF, Nicosia SV, Smith M. Vascular endothelial growth factor, platelet-derived growth factor, and insulin-like growth factor-1 promote rat aortic angiogenesis in vitro. Am J Pathol. 1994;145:1023–9.

    PubMed  CAS  Google Scholar 

  15. Bos R, van Diest PJ, de Jong JS, van der Groep P, van der Valk P, van der Wall E. Hypoxia-inducible factor-1alpha is associated with angiogenesis, and expression of bFGF, PDGF-BB, and EGFR in ­invasive breast cancer. Histopathology. 2005;46:31–6.

    Article  PubMed  CAS  Google Scholar 

  16. Yrjö TK, Emilia K, Vasily S, Wagner HD, Jaakko L, Veli-Matti T, Zygmunt M. Extracellular matrix and tissue regeneration. In: Gustav S, editor. Regenerative medicine. Dordrecht: Springer; 2011. p. 21–80. doi:10.1007/978-90-481-9075-1_2. Part 1.

    Google Scholar 

  17. Bhattacharya N. A study and follow-up (1999–2009) of human fetal neurotransplants at a heterotopic site outside the brain in patients of advanced Idiopathic Parkinsonism. In: Bhattacharya N, Stubblefield P, ­editors. Regenerative medicine using ­pregnancy-specific biological substances. London: Springer; 2011. p. 407. doi:10.1007/978-1-84882-718-9_39.

    Chapter  Google Scholar 

  18. van Vliet P, Smits AM, de Boer TP, Korfage TH, Metz CH, Roccio M, van der Heyden MA, van Veen TA, Sluijter JP, Doevendans PA, Goumans MJ. Foetal and adult cardiomyocyte progenitor cells have different developmental potential. J Cell Mol Med. 2010;14(4):861–70.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The Department of Science and Technology, Government of West Bengal supported the investigator with a research grant during his tenure at Bijoygarh State Hospital from 1999 to 2006. The work started in Bijoygarh Government Hospital (1999–2006) and was followed up at Vidyasagore Government Hospital subsequently. The author gratefully acknowledges the support of the patients who volunteered for this research work. The guidance of Prof. K. L. Mukherjee of Biochemistry and Prof. M. K. Chhetri, former Director of Health Services, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niranjan Bhattacharya D.Sc., M.D., M.S., FACS (USA) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Bhattacharya, N., Chettri, M.K., Chettri, M.K. (2013). Human Heterotopic Fetal Cardiac Tissue Transplant in Patients with Varying Degrees of Cardiomyopathy with Ischemic Heart Disease and Diabetes Mellitus: A Report of 7 Cases. In: Bhattacharya, N., Stubblefield, P. (eds) Human Fetal Tissue Transplantation. Springer, London. https://doi.org/10.1007/978-1-4471-4171-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4171-6_29

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4170-9

  • Online ISBN: 978-1-4471-4171-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics