Human Heterotopic Fetal Cardiac Tissue Transplant in Patients with Varying Degrees of Cardiomyopathy with Ischemic Heart Disease and Diabetes Mellitus: A Report of 7 Cases

  • Niranjan Bhattacharya
  • M. K. Chettri
  • M. K. Chettri


Cardiomyopathy is a difficult condition of the heart muscle when the cardiac cells lose their specialized function and behave like normal muscle. The causes could be extrinsic factors or secondary factors, for instance, drugs (alcohol and others), endocrine, inflammatory, metabolic, nutritional, neuromuscular, and autoimmune, acting either singly or in combination, affecting the myocardium. The other cause is intrinsic (primary), where the problem lies with the functioning of the cardiac muscles itself, with predisposition of genetic (a heritable 25-base pair [bp] deletion from the gene coding for cardiac myosin-binding protein-C (MYBPC3) is associated with various MYBPC3 mutations which predisposes cardiac diseases), acquired, or mixed etiology. From the functional point of view, it could be of a dilated variety, a restrictive variety, and an obstructive variety.


Ventricular Assisted Device Multipotent Mesenchymal Stromal Cell Restrictive Cardiomyopathy Endomyocardial Fibrosis Myocardial Blood Flow Reserve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The Department of Science and Technology, Government of West Bengal supported the investigator with a research grant during his tenure at Bijoygarh State Hospital from 1999 to 2006. The work started in Bijoygarh Government Hospital (1999–2006) and was followed up at Vidyasagore Government Hospital subsequently. The author gratefully acknowledges the support of the patients who volunteered for this research work. The guidance of Prof. K. L. Mukherjee of Biochemistry and Prof. M. K. Chhetri, former Director of Health Services, is gratefully acknowledged.


  1. 1.
    Sivasankaran S. Restrictive cardiomyopathy in India: the story of a vanishing mystery: global burden of cardiovascular disease. Heart. 2009;95:9–14. doi: 10.1136/hrt.2008.148437.PubMedCrossRefGoogle Scholar
  2. 2.
    Henning RJ. Stem cells in cardiac repair. Future Cardiol. 2011;7(1):99–117.PubMedCrossRefGoogle Scholar
  3. 3.
    Tang XL, Rokosh G, Sanganalmath SK, Yuan F, Sato H, Mu J, Dai S, Li C, Chen N, Peng Y, Dawn B, Hunt G, Leri A, Kajstura J, Tiwari S, Shirk G, Anversa P, Bolli R. Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation. 2010; 121(2):293–305.PubMedCrossRefGoogle Scholar
  4. 4.
    Emanueli C, Lako M, Stojkovic M, Madeddu P. In search of the best candidate for regeneration of ischemic tissues: are embryonic/fetal stem cells more advantageous than adult counterparts? Thromb Haemost. 2005;94(4):738–49.PubMedGoogle Scholar
  5. 5.
    Djouad F, Bouffi C, Ghannam S, Noël D, Jorgensen C. Mesenchymal stem cells: innovative therapeutic tools for rheumatic diseases. Nat Rev Rheumatol. 2009;5(7):392–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Fonarow GC, Srikanthan P. Diabetic cardiomyopathy. Endocrinol Metab Clin North Am. 2006;35(3):575–99, ix. doi: 10.1016/j.ecl.2006.05.003.
  7. 7.
    Moir S, Hanekom L, Fang ZY, et al. Relationship between myocardial perfusion and dysfunction in diabetic cardiomyopathy: a study of quantitative contrast echocardiography and strain rate imaging. Heart. 2006;92(10):1414–9. doi: 10.1136/hrt.2005.079350.PubMedCrossRefGoogle Scholar
  8. 8.
    Ungar I, Gilbert M, Siegel A, Blain JM, Bing RJ. Studies on myocardial metabolism. IV. Myocardial metabolism in diabetes. Am J Med. 1955;18(3):385–96. doi: 10.1016/0002-9343(55)90218-7. Scholar
  9. 9.
    Bing RJ, Siegel A, Ungar I, Gilbert M. Metabolism of the human heart: II. Studies on fat, ketone and amino acid metabolism. Am J Med. 1954;16(4):504–15. doi: 10.1016/0002-9343(54)90365-4.PubMedCrossRefGoogle Scholar
  10. 10.
    Li RK, Jia ZQ, Weisel RD, et al. Cardiomyocyte transplantation improves heart function. Ann Thorac Surg. 1996;62:654–61.PubMedCrossRefGoogle Scholar
  11. 11.
    Tomita S, Li RK, Weisel RD, et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation. 1999;100:II247–56.PubMedCrossRefGoogle Scholar
  12. 12.
    Distler JH, Hirth A, Kurowska-Stolarska M, Gay RE, Gay S, Distler O. Angiogenic and angiostatic factors in the molecular control of angiogenesis. Q J Nucl Med. 2003;47:149–61.PubMedGoogle Scholar
  13. 13.
    Brogi E, Wu T, Namiki A, Isner JM. Indirect ­angiogenic cytokines upregulate VEGF and bFGF gene expression in vascular smooth muscle cells, whereas hypoxia upregulates VEGF expression only. Circulation. 1994;90:649–52.PubMedCrossRefGoogle Scholar
  14. 14.
    Nicosia RF, Nicosia SV, Smith M. Vascular endothelial growth factor, platelet-derived growth factor, and insulin-like growth factor-1 promote rat aortic angiogenesis in vitro. Am J Pathol. 1994;145:1023–9.PubMedGoogle Scholar
  15. 15.
    Bos R, van Diest PJ, de Jong JS, van der Groep P, van der Valk P, van der Wall E. Hypoxia-inducible factor-1alpha is associated with angiogenesis, and expression of bFGF, PDGF-BB, and EGFR in ­invasive breast cancer. Histopathology. 2005;46:31–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Yrjö TK, Emilia K, Vasily S, Wagner HD, Jaakko L, Veli-Matti T, Zygmunt M. Extracellular matrix and tissue regeneration. In: Gustav S, editor. Regenerative medicine. Dordrecht: Springer; 2011. p. 21–80. doi: 10.1007/978-90-481-9075-1_2. Part 1.Google Scholar
  17. 17.
    Bhattacharya N. A study and follow-up (1999–2009) of human fetal neurotransplants at a heterotopic site outside the brain in patients of advanced Idiopathic Parkinsonism. In: Bhattacharya N, Stubblefield P, ­editors. Regenerative medicine using ­pregnancy-specific biological substances. London: Springer; 2011. p. 407. doi: 10.1007/978-1-84882-718-9_39.CrossRefGoogle Scholar
  18. 18.
    van Vliet P, Smits AM, de Boer TP, Korfage TH, Metz CH, Roccio M, van der Heyden MA, van Veen TA, Sluijter JP, Doevendans PA, Goumans MJ. Foetal and adult cardiomyocyte progenitor cells have different developmental potential. J Cell Mol Med. 2010;14(4):861–70.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Niranjan Bhattacharya
    • 1
  • M. K. Chettri
    • 2
  • M. K. Chettri
    • 3
  1. 1.Department of Regenerative Medicine and Translational ScienceCalcutta School of Tropical MedicineCalcuttaIndia
  2. 2.IPGMERCalcuttaIndia
  3. 3.Health ServicesCalcuttaIndia

Personalised recommendations