Skip to main content

Umbilical Cord Stem Cells for Pancreatic Regenerative Medicine

  • Chapter
  • First Online:
  • 875 Accesses

Abstract

Diabetes mellitus is one of the leading causes of morbidity and mortality in many countries and is considered as one of the epidemics of the twenty-first century. Current diabetes treatment is mostly based around daily insulin injection. Pancreas or islet transplantation first appeared as a good alternative, but lack of donor calls for more reliable clinical approaches. Recently, stem cell-based therapies have emerged as promising alternatives for pancreatic regenerative medicine. This chapter will review recent innovative clinical and preclinical applications used for diabetes treatment ranging from insulin injection to newly established cellular clinical trials with umbilical cord stem cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Limbert C, et al. Beta-cell replacement and regeneration: strategies of cell-based therapy for type 1 diabetes mellitus. Diabetes Res Clin Pract. 2008;79(3):389–99.

    Article  PubMed  CAS  Google Scholar 

  2. Sabin MA, Cameron FJ, Werther GA. Type 1 diabetes – still the commonest form of diabetes in children. Aust Fam Physician. 2009;38(9):695–7.

    PubMed  Google Scholar 

  3. Sun B, et al. Induction of human umbilical cord blood-derived stem cells with embryonic stem cell phenotypes into insulin producing islet-like structure. Biochem Biophys Res Commun. 2007;354(4):919–23.

    Article  PubMed  CAS  Google Scholar 

  4. Montanya E. Islet- and stem-cell-based tissue engineering in diabetes. Curr Opin Biotechnol. 2004;15(5):435–40.

    Article  PubMed  CAS  Google Scholar 

  5. Wild S, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–53.

    Article  PubMed  Google Scholar 

  6. Mehers KL, Gillespie KM. The genetic basis for type 1 diabetes. Br Med Bull. 2008;88(1):115–29.

    Article  PubMed  CAS  Google Scholar 

  7. Aribi M. Candidate genes implicated in type 1 diabetes susceptibility. Curr Diabetes Rev. 2008;4(2):110–21.

    Article  PubMed  CAS  Google Scholar 

  8. MacFarlane AJ, Strom A, Scott FW. Epigenetics: deciphering how environmental factors may modify autoimmune type 1 diabetes. Mamm Genome. 2009;20(9–10):624–32.

    Article  PubMed  CAS  Google Scholar 

  9. Zipris D. Epidemiology of type 1 diabetes and what animal models teach us about the role of viruses in ­disease mechanisms. Clin Immunol. 2009;131(1):11–23.

    Article  PubMed  CAS  Google Scholar 

  10. Chowdhury TA, Mijovic CH, Barnett AH. The aetiology of type I diabetes. Baillieres Best Pract Res Clin Endocrinol Metab. 1999;13(2):181–95.

    Article  PubMed  CAS  Google Scholar 

  11. Kraine MR, Tisch RM. The role of environmental factors in insulin-dependent diabetes mellitus: an unresolved issue. Environ Health Perspect. 1999;107 Suppl 5:777–81.

    Article  PubMed  Google Scholar 

  12. Gremizzi C, et al. Impact of pancreas transplantation on type 1 diabetes-related complications. Curr Opin Organ Transplant. 2010;15(1):119–23.

    Article  PubMed  Google Scholar 

  13. de La Sierra A, Ruilope LM. Treatment of hypertension in diabetes mellitus. Curr Hypertens Rep. 2000;2(3):335–42.

    Article  Google Scholar 

  14. Barrios V, Escobar C. Diabetes and hypertension. What is new? Minerva Cardioangiol. 2009;57(6):705–22.

    PubMed  CAS  Google Scholar 

  15. Retnakaran R, Zinman B. Type 1 diabetes, hyperglycaemia, and the heart. Lancet. 2008;371(9626):1790–9.

    Article  PubMed  CAS  Google Scholar 

  16. Crawford TN, et al. Diabetic retinopathy and angiogenesis. Curr Diabetes Rev. 2009;5(1):8–13.

    Article  PubMed  CAS  Google Scholar 

  17. Sanchez AP, Sharma K. Transcription factors in the pathogenesis of diabetic nephropathy. Expert Rev Mol Med. 2009;11:e13.

    Article  PubMed  Google Scholar 

  18. Harris DT. Non-haematological uses of cord blood stem cells. Br J Haematol. 2009;147(2):177–84.

    Article  PubMed  Google Scholar 

  19. Liao YH, Verchere CB, Warnock GL. Adult stem or progenitor cells in treatment for type 1 diabetes: current progress. Can J Surg. 2007;50(2):137–42.

    PubMed  Google Scholar 

  20. Clark PM. Assays for insulin, proinsulin(s) and C-peptide. Ann Clin Biochem. 1999;36(Pt 5):541–64.

    PubMed  CAS  Google Scholar 

  21. Kelly WD, et al. Allotransplantation of the pancreas and duodenum along with the kidney in diabetic nephropathy. Surgery. 1967;61(6):827–37.

    PubMed  CAS  Google Scholar 

  22. Shapira Z, Yussim A, Mor E. Pancreas transplantation. J Pediatr Endocrinol Metab. 1999;12(1):3–15.

    Article  PubMed  CAS  Google Scholar 

  23. Lacy PE. Pancreatic transplantation as a means of insulin delivery. Diabetes Care. 1982;5 Suppl 1:93–7.

    PubMed  Google Scholar 

  24. Ballinger WF, Lacy PE. Transplantation of intact pancreatic islets in rats. Surgery. 1972;72(2):175–86.

    PubMed  CAS  Google Scholar 

  25. Shapiro AM, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000;343(4):230–8.

    Article  PubMed  CAS  Google Scholar 

  26. Azzi J, et al. Immunological aspects of pancreatic islet cell transplantation. Expert Rev Clin Immunol. 2010;6(1):111–24.

    Article  PubMed  Google Scholar 

  27. Close NC, Hering BJ, Eggerman TL. Results from the inaugural year of the Collaborative Islet Transplant Registry. Transplant Proc. 2005;37(2):1305–8.

    Article  PubMed  CAS  Google Scholar 

  28. Home PD, et al. A comparison of the activity and disposal of semi-synthetic human insulin and porcine insulin in normal man by the glucose clamp technique. Diabetologia. 1982;22(1):41–5.

    Article  PubMed  CAS  Google Scholar 

  29. Wilson ME, Scheel D, German MS. Gene expression cascades in pancreatic development. Mech Dev. 2003;120(1):65–80.

    Article  PubMed  CAS  Google Scholar 

  30. Bernardo AS, Hay CW, Docherty K. Pancreatic transcription factors and their role in the birth, life and survival of the pancreatic beta cell. Mol Cell Endocrinol. 2008;294(1–2):1–9.

    Article  PubMed  CAS  Google Scholar 

  31. Xu X, et al. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell. 2008;132(2):197–207.

    Article  PubMed  CAS  Google Scholar 

  32. Zaret KS. Genetic programming of liver and pancreas progenitors: lessons for stem-cell differentiation. Nat Rev Genet. 2008;9(5):329–40.

    Article  PubMed  CAS  Google Scholar 

  33. Sander M, German MS. The beta cell transcription factors and development of the pancreas. J Mol Med. 1997;75(5):327–40.

    Article  PubMed  CAS  Google Scholar 

  34. Zhou Q, et al. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature. 2008;455(7213):627–32.

    Article  PubMed  CAS  Google Scholar 

  35. Suzuki A, Nakauchi H, Taniguchi H. Glucagon-like peptide 1 (1–37) converts intestinal epithelial cells into insulin-producing cells. Proc Natl Acad Sci USA. 2003;100(9):5034–9.

    Article  PubMed  CAS  Google Scholar 

  36. Narushima M, et al. A human beta-cell line for transplantation therapy to control type 1 diabetes. Nat Biotechnol. 2005;23(10):1274–82.

    Article  PubMed  CAS  Google Scholar 

  37. Petropavlovskaia M, Rosenberg L. Identification and characterization of small cells in the adult pancreas: potential progenitor cells? Cell Tissue Res. 2002;310(1):51–8.

    Article  PubMed  Google Scholar 

  38. Bouwens L. Islet morphogenesis and stem cell markers. Cell Biochem Biophys. 2004;40(3 Suppl):81–8.

    Article  PubMed  Google Scholar 

  39. Bouwens L. Transdifferentiation versus stem cell hypothesis for the regeneration of islet beta-cells in the pancreas. Microsc Res Tech. 1998;43(4):332–6.

    Article  PubMed  CAS  Google Scholar 

  40. Wang RN, Kloppel G, Bouwens L. Duct- to islet-cell differentiation and islet growth in the pancreas of duct-ligated adult rats. Diabetologia. 1995;38(12):1405–11.

    Article  PubMed  CAS  Google Scholar 

  41. Rooman I, Lardon J, Bouwens L. Gastrin stimulates beta-cell neogenesis and increases islet mass from transdifferentiated but not from normal exocrine pancreas tissue. Diabetes. 2002;51(3):686–90.

    Article  PubMed  CAS  Google Scholar 

  42. Heremans Y, et al. Recapitulation of embryonic neuroendocrine differentiation in adult human pancreatic duct cells expressing neurogenin 3. J Cell Biol. 2002;159(2):303–12.

    Article  PubMed  CAS  Google Scholar 

  43. Taniguchi H, et al. beta-cell neogenesis induced by adenovirus-mediated gene delivery of transcription factor pdx-1 into mouse pancreas. Gene Ther. 2003;10(1):15–23.

    Article  PubMed  CAS  Google Scholar 

  44. Zulewski H, et al. Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes. 2001;50(3):521–33.

    Article  PubMed  CAS  Google Scholar 

  45. Hall PA, Lemoine NR. Rapid acinar to ductal trans­differentiation in cultured human exocrine pancreas. J Pathol. 1992;166(2):97–103.

    Article  PubMed  CAS  Google Scholar 

  46. Horb ME, et al. Experimental conversion of liver to pancreas. Curr Biol. 2003;13(2):105–15.

    Article  PubMed  CAS  Google Scholar 

  47. Ferber S, et al. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat Med. 2000;6(5):568–72.

    Article  PubMed  CAS  Google Scholar 

  48. Yang L, et al. In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc Natl Acad Sci USA. 2002;99(12):8078–83.

    Article  PubMed  CAS  Google Scholar 

  49. Yoshida S, et al. PDX-1 induces differentiation of intestinal epithelioid IEC-6 into insulin-producing cells. Diabetes. 2002;51(8):2505–13.

    Article  PubMed  CAS  Google Scholar 

  50. Street CN, Rajotte RV, Korbutt GS. Stem cells: a promising source of pancreatic islets for transplantation in type 1 diabetes. Curr Top Dev Biol. 2003;58:111–36.

    Article  PubMed  Google Scholar 

  51. Mishra PK, et al. Stem cells as a therapeutic target for diabetes. Front Biosci. 2010;15:461–77.

    Article  PubMed  CAS  Google Scholar 

  52. Hori Y. Insulin-producing cells derived from stem/progenitor cells: therapeutic implications for diabetes mellitus. Med Mol Morphol. 2009;42(4):195–200.

    Article  PubMed  Google Scholar 

  53. Cai J, Weiss ML, Rao MS. In search of “stemness”. Exp Hematol. 2004;32(7):585–98.

    Article  PubMed  Google Scholar 

  54. McGuckin C, Forraz N. The umbilical cord: a rich and ethical stem cell source to advance regenerative medicine. Cell Prolif. 2011;44 Suppl 1:60–9.

    PubMed  Google Scholar 

  55. McGuckin CP, Forraz N. Umbilical cord blood stem cells – an ethical source for regenerative medicine. Med Law. 2008;27(1):147–65.

    PubMed  Google Scholar 

  56. McGuckin CP, Forraz N. Potential for access to embryonic-like cells from human umbilical cord blood. Cell Prolif. 2008;41 Suppl 1:31–40.

    PubMed  Google Scholar 

  57. Kern S, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294–301.

    Article  PubMed  CAS  Google Scholar 

  58. Leeb C, et al. Promising new sources for pluripotent stem cells. Stem Cell Rev. 2010;6(1):15–26.

    Article  PubMed  Google Scholar 

  59. Zhao Y, Wang H, Mazzone T. Identification of stem cells from human umbilical cord blood with embryonic and hematopoietic characteristics. Exp Cell Res. 2006;312(13):2454–64.

    Article  PubMed  CAS  Google Scholar 

  60. Gao F, et al. Extracellular matrix gel is necessary for in vitro cultivation of insulin producing cells from human umbilical cord blood derived mesenchymal stem cells. Chin Med J (Engl). 2008;121(9):811–8.

    CAS  Google Scholar 

  61. Hu YH, et al. A secretory function of human insulin-producing cells in vivo. Hepatobiliary Pancreat Dis Int. 2009;8(3):255–60.

    PubMed  CAS  Google Scholar 

  62. Beattie GM, et al. A novel approach to increase human islet cell mass while preserving beta-cell function. Diabetes. 2002;51(12):3435–9.

    Article  PubMed  CAS  Google Scholar 

  63. Itskovitz-Eldor J, et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med. 2000;6(2):88–95.

    PubMed  CAS  Google Scholar 

  64. Lumelsky N, et al. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science. 2001;292(5520):1389–94.

    Article  PubMed  CAS  Google Scholar 

  65. Jiang W, et al. In vitro derivation of functional insulin-producing cells from human embryonic stem cells. Cell Res. 2007;17(4):333–44.

    Article  PubMed  CAS  Google Scholar 

  66. Jiang Y, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418(6893):41–9.

    Article  PubMed  CAS  Google Scholar 

  67. Ianus A, et al. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest. 2003;111(6):843–50.

    PubMed  CAS  Google Scholar 

  68. Oh SH, et al. Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes. Lab Invest. 2004;84(5):607–17.

    Article  PubMed  CAS  Google Scholar 

  69. Chen LB, Jiang XB, Yang L. Differentiation of rat marrow mesenchymal stem cells into pancreatic islet beta-cells. World J Gastroenterol. 2004;10(20):3016–20.

    PubMed  CAS  Google Scholar 

  70. Limbert C, Seufert J. In vitro (re)programming of human bone marrow stromal cells toward insulin-producing phenotypes. Pediatr Diabetes. 2009;10(6):413–9.

    Article  PubMed  Google Scholar 

  71. Karnieli O, et al. Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells. 2007;25(11):2837–44.

    Article  PubMed  CAS  Google Scholar 

  72. Koblas T, Harman SM, Saudek F. The application of umbilical cord blood cells in the treatment of diabetes mellitus. Rev Diabet Stud. 2005;2(4):228–34.

    Article  PubMed  Google Scholar 

  73. McGuckin CP, et al. Production of stem cells with embryonic characteristics from human umbilical cord blood. Cell Prolif. 2005;38(4):245–55.

    Article  PubMed  CAS  Google Scholar 

  74. McGuckin C, et al. Culture of embryonic-like stem cells from human umbilical cord blood and onward differentiation to neural cells in vitro. Nat Protoc. 2008;3(6):1046–55.

    Article  PubMed  CAS  Google Scholar 

  75. Haller MJ, et al. Autologous umbilical cord blood infusion for type 1 diabetes. Exp Hematol. 2008;36(6):710–5.

    Article  PubMed  CAS  Google Scholar 

  76. Haller MJ, et al. Autologous umbilical cord blood transfusion in very young children with type 1 diabetes. Diabetes Care. 2009;32(11):2041–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin P. McGuckin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Le Roy, H., Forraz, N., Jurga, M., McGuckin, C.P. (2013). Umbilical Cord Stem Cells for Pancreatic Regenerative Medicine. In: Bhattacharya, N., Stubblefield, P. (eds) Human Fetal Tissue Transplantation. Springer, London. https://doi.org/10.1007/978-1-4471-4171-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4171-6_21

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4170-9

  • Online ISBN: 978-1-4471-4171-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics