Applications to Lunar Remote Sensing

  • Christian Wöhler
Part of the X.media.publishing book series (XMEDIAPUBL)

Abstract

This chapter addresses applications in the domain of remote sensing, especially the generation of elevation models (DEMs) of the lunar surface, concentrating on the construction of DEMs of small parts of the lunar surface at high lateral resolution and high vertical accuracy. We begin with a general overview of existing methods used for constructing DEMs of planetary bodies and the corresponding data sets. We regard the three-dimensional reconstruction of lunar craters at high resolution, i.e. beyond a determination of their depth and rim height, and discuss the three-dimensional reconstruction of lunar wrinkle ridges and tectonic faults. Furthermore, we describe the generation of DEMs of lunar domes, subtle volcanic features on the Moon.

Keywords

Nickel Mercury Silicate Manifold Radar 

References

  1. Araki, H., Tazawa, S., Noda, H., Ishihara, Y., Goossens, S., Kawano, N., Sasaki, S., Kamiya, I., Otake, H., Oberst, J., Shum, C. K., 2009. The lunar global topography by the laser altimeter (LALT) onboard Kaguya (SELENE): results from the one year observation. Lunar Planet. Sci. XXXX, abstract #1432. Google Scholar
  2. Ashbrook, J., 1961. Dimensions of the Lunar Dome Kies 1. J. Assoc. Lunar Planet. Obs. 15(1–2), pp. 1–3. Google Scholar
  3. Baumgardner, J., Mendillo, M., Wilson, J. K., 2000. A digital high definition imaging system for spectral studies of extended planetary atmospheres, 1. Initial result in white light showing features on the hemisphere of Mercury unimaged by Mariner 10. Astron. J. 119, pp. 2458–2464. CrossRefGoogle Scholar
  4. Beyer, R. A., McEwen, A. S., 2002. Photoclinometric measurements of meter-scale slopes for the potential landing sites of the 2003 Mars Exploration Rovers. Proc. Lunar Planet. Sci. XXXIII, abstract #1443. Google Scholar
  5. Brungart, D. L., 1964. The Origin of Lunar Domes. M.Sc. thesis, Airforce Institute of Technology, Wright Patterson Air Force Base, Ohio, USA. Google Scholar
  6. Bussey, C., Spudis, P., 2004. The Clementine Atlas of the Moon. Cambridge University Press, Cambridge. Google Scholar
  7. Chandrasekhar, S., 1950. Radiative Transfer. Oxford University, London. MATHGoogle Scholar
  8. Cintala, M. J., Head, J. W., Mutch, T. A., 1976. Craters on the Moon, Mars, and Mercury: a comparison of depth/diameter characteristics. Proc. Lunar Planet. Sci. VII, pp. 149–151. Google Scholar
  9. Cook, A. C., 2007. Lunar Digital Elevation Models. http://users.aber.ac.uk/atc/dems.html (accessed November 05, 2007).
  10. Cook, A. C., Spudis, P. D., Robinson, M. S., Watters, T. R., Bussey, D. B. J., 1999. The topography of the lunar poles from digital stereo analysis. Proc. Lunar Planet. Sci. XXX, abstract #1154. Google Scholar
  11. d’Angelo, P., Wöhler, C., 2008. Image-based 3D surface reconstruction by combination of photometric, geometric, and real-aperture methods. ISPRS J. Photogramm. Remote Sens. 63(3), pp. 297–321. CrossRefGoogle Scholar
  12. European Space Agency, 2006. Kepler Crater as Seen by SMART-1 (June 30, 2006). http://www.esa.int/SPECIALS/SMART-1/SEMBGLVT0PE_2.html (accessed August 22, 2006).
  13. Fenton, L. K., Herkenhoff, K. E., 2000. Topography and stratigraphy of the northern martian polar layered deposits using photoclinometry, stereogrammetry, and MOLA altimetry. Icarus 147(2), pp. 433–443. CrossRefGoogle Scholar
  14. Gaddis, L. R., Tyburczy, J. A., Hawke, B. R., 2000. Mafic characteristics of lunar pyroclastic deposits. Lunar Planet. Sci. XXXI, abstract #1700. Google Scholar
  15. Gaddis, L. R., Staid, M. I., Tyburczy, J. A., Hawke, B. R., Petro, N. E., 2003. Compositional analyses of lunar pyroclastic deposits. Icarus 161, pp. 262–280. CrossRefGoogle Scholar
  16. Gaskell, R. W., Barnoiun-Jha, O. S., Scheeres, D. J., 2007. Modeling Eros with stereophotoclinometry. Proc. Lunar Planet. Sci. XXXVIII, abstract #1333. Google Scholar
  17. Gehrke, S., Lehmann, H., Wahlisch, M., Albertz, J., 2006. New large-scale topographic maps of planet mars. Proc. Europ. Planetary Science Congress, Berlin, Germany, p. 228. Google Scholar
  18. Gottesfeld Brown, L., 1992. A survey of image registration techniques. ACM Comput. Surv. 24(4), pp. 325–376. CrossRefGoogle Scholar
  19. Grieger, B., Beauvivre, S., Despan, D., Erard, S., Josset, J.-L., Koschny, D., 2008. Investigating a peak of (almost) eternal light close to the lunar south pole with SMART-1/AMIE images. Proc. European Planetary Science Congress, EPSC2008-A-00205, Münster, Germany. Google Scholar
  20. Grumpe, A., Herbort, S., Wöhler, C., 2011. 3D reconstruction of non-Lambertian surfaces with non-uniform reflectance parameters by fusion of photometrically estimated surface normal data with active range scanner data. Proc. Oldenburger 3D-Tage, Oldenburg, Germany, pp. 54–61. Google Scholar
  21. Grumpe, A., Wöhler, C., 2011. DEM construction and calibration of hyperspectral image data using pairs of radiance images. Proc. Int. Symp. on Image and Signal Processing and Analysis, Special Session on Image Processing and Analysis in Lunar and Planetary Science, Dubrovnik, Croatia, 2011. Google Scholar
  22. Gwinner, K., Scholten, F., Preusker, F., Elgner, S., Roatsch, T., Spiegel, M., Schmidt, R., Oberst, J., Jaumann, R., Heipke, C., 2010. Topography of Mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: characteristics and performance. Earth Planet. Sci. Lett. 294, pp. 506–519. CrossRefGoogle Scholar
  23. Hafezi, K., Wöhler, C., 2004. A general framework for three-dimensional surface reconstruction by self-consistent fusion of shading and shadow features and its application to industrial quality inspection tasks. Photonics Europe, Strasbourg, SPIE 5457, pp. 138–149. Google Scholar
  24. Hapke, B. W., 1981. Bidirectional reflectance spectroscopy 1: Theory. J. Geophys. Res. 86, pp. 3039–3054. CrossRefGoogle Scholar
  25. Hapke, B. W., 1984. Bidirectional reflectance spectroscopy 3: correction for macroscopic roughness. Icarus 59, pp. 41–59. CrossRefGoogle Scholar
  26. Hapke, B. W., 1986. Bidirectional reflectance spectroscopy 4: the extinction coefficient and the opposition effect. Icarus 67, pp. 264–280. CrossRefGoogle Scholar
  27. Hapke, B. W., 2002. Bidirectional reflectance spectroscopy 5: the coherent backscatter opposition effect and anisotropic scattering. Icarus 157, pp. 523–534. CrossRefGoogle Scholar
  28. Harmon, J. K., Campbell, D. B., 1988. Radar observations of Mercury. In: Vilas, F., Chapman, C. R., Shapley Matthews, M. (eds.), Mercury, The University of Arizona Press, Tucson. Google Scholar
  29. Hawke, B. R., Lawrence, D. J., Blewett, D. T., Lucey, P. G., Smith, G. A., Spudis, P. D., Taylor, G. J., 2003. Hansteen alpha: a volcanic construct in the lunar highlands. J. Geophys. Res. 108(E7), CiteID 5069, doi: 10.1029/2002JE002013.
  30. Head, J. W., Gifford, A., 1980. Lunar mare domes: classification and modes of origin. Moon Planets 22, pp. 235–257. CrossRefGoogle Scholar
  31. Helfenstein, P., 1988. The geological interpretation of photometric surface roughness. Icarus 73, pp. 462–481. CrossRefGoogle Scholar
  32. Henyey, L. G., Greenstein, J. L., 1941. Diffuse radiation in the Galaxy. Astrophys. J. 93, pp. 70–83. CrossRefGoogle Scholar
  33. Herbort, S., Grumpe, A. & Wöhler, C., 2011. Reconstruction of non-Lambertian surfaces by fusion of shape from shading and active range scanning. Proc. IEEE Int. Conf. Image Process. Google Scholar
  34. Herkenhoff, K. E., Soderblom, L. A., Kirk, R. L., 2002. MOC photoclinometry of the north polar residual cap on Mars. Proc. Lunar Planet. Sci. XXXIII, abstract #1714. Google Scholar
  35. Hiesinger, H., Head, J. W., Wolf, U., Jaumann, R., Neukum, G., 2003. Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum. J. Geophys. Res. 108(E7), pp. 5065–5091. CrossRefGoogle Scholar
  36. Hirschmüller, H., 2006. Stereo vision in structured environments by consistent semi-global matching. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2, pp. 2386–2393. Google Scholar
  37. Hirschmüller, H., Mayer, H., Neukum, G., and the HRSC CoI team, 2007. Stereo processing of HRSC Mars express images by semi-global matching. Symposium of ISPRS Commission IV/7, Goa, India. Google Scholar
  38. Horn, B. K. P., 1989. Height and Gradient from Shading. MIT Technical Report, AI memo, no. 1105A. Google Scholar
  39. Howard, A. D., Blasius, K. R., Cutts, J. A., 1982. Photoclinometric determination of the topography of the martian north polar cap. Icarus 50, pp. 245–258. CrossRefGoogle Scholar
  40. Jaumann, R., et al., 2007. The high-resolution stereo camera (HRSC) experiment on Mars Express: instrument aspects and experiment conduct from interplanetary cruise through the nominal mission. Planet. Space Sci. 55(7–8), pp. 928–952. CrossRefGoogle Scholar
  41. Joshi, M. V., Chaudhuri, S., 2004. Photometric stereo under blurred observations. Proc. Int. Conf. on Pattern Recognition, Cambridge, UK, vol. 3, pp. 169–172. Google Scholar
  42. Kerr, A. D., Pollard, D. D., 1998. Toward more realistic formulations for the analysis of laccoliths. J. Struct. Geol. 20(12), pp. 1783–1793. CrossRefGoogle Scholar
  43. Kuiper, G. P., 1961. Orthographic Atlas of the Moon. University of Arizona Press, Tucson. Google Scholar
  44. Kusuma, K. N., Sebastian, N., Murty, S. V. S., 2012. Geochemical and mineralogical analysis of Gruithuisen region on Moon using M3 and Diviner images. Planet. Space Sci. 67(1), pp. 46–56. CrossRefGoogle Scholar
  45. Lena, R., Wöhler, C., Bregante, M. T., Fattinnanzi, C., 2006. A combined morphometric and spectrophotometric study of the complex lunar volcanic region in the south of Petavius. J. R. Astron. Soc. Can. 100(1), pp. 14–25. Google Scholar
  46. Lena, R., Wöhler, C., Bregante, M. T., Lazzarotti, P., Lammel, S., 2008. Lunar domes in Mare Undarum: spectral and morphometric properties, eruption conditions, and mode of emplacement. Planet. Space Sci. 56, pp. 553–569. CrossRefGoogle Scholar
  47. Lena, R., Wöhler, C., Phillips, J., 2009. Marius Hills: morphometry, rheology, and mode of emplacement. Proc. European Planetary Science Congress, EPSC2009-262, Potsdam, Germany. Google Scholar
  48. Lohse, V., Heipke, C., 2004. Multi-image shape-from-shading. Derivation of planetary digital terrain models using Clementine images. Int. Arch. Photogramm. Remote Sens. XXXV(B4), pp. 828–833. Google Scholar
  49. Lohse, V., Heipke, C., Kirk, R. L., 2006. Derivation of planetary topography using multi-image shape-from-shading. Planet. Space Sci. 54, pp. 661–674. CrossRefGoogle Scholar
  50. McEwen, A. S., 1991. Photometric functions for photoclinometry and other applications. Icarus 92, pp. 298–311. CrossRefGoogle Scholar
  51. McEwen, A. S., 1996. A precise lunar photometric function. Proc. Lunar Planet. Sci. XXVII, pp. 841–842. Google Scholar
  52. McKay, D. S., Heiken, G., Basu, A., Blanford, G., Simon, S., Reedy, R., French, B. M., Papike, J., 1991. The Lunar regolith. In: Heiken, G., Vaniman, D., French, B. M. (eds.), Lunar Sourcebook, Cambridge University Press, Cambridge. Google Scholar
  53. McGuire, A. F., Hapke, B. W., 1995. An experimental study of light scattering by large, irregular particles. Icarus 113, pp. 134–155. CrossRefGoogle Scholar
  54. Michaut, C., 2010. Dynamics of laccolith intrusions, with applications to Earth and Moon. Lunar Planet. Sci. XXXXI, abstract #1084. Google Scholar
  55. Mouginis-Mark, P. J., Wilson, L., 1979. Photoclinometric measurements of Mercurian landforms. Proc. Lunar Planet. Sci. X, pp. 873–875. Google Scholar
  56. Neumann, G. A., 2009. Lunar Orbiter Laser Altimeter Raw Data Set, LRO-L-LOLA-4-GDR-V1.0, NASA Planetary Data System. http://pds-geosciences.wustl.edu/missions/lro/lola.htm (accessed November 01, 2011)
  57. Pettengill, G. H., Eliason, E., Ford, P. G., Loriat, G. B., 1980. Pioneer Venus radar results: altimetry and surface properties. J. Geophys. Res. 85, pp. 8261–8270. CrossRefGoogle Scholar
  58. Pieters, C. M., et al., 2009. The Moon mineralogy mapper (M3) on Chandrayaan-1. Curr. Sci. 96(4), 500–505. Google Scholar
  59. Pike, R. J., Clow, G., 1981. Revised Classification of Terrestrial Volcanoes and Catalogue of Topographic Dimensions, with new Results of Edifice Volume. US Geological Survey Open-File Report 81-1038. Google Scholar
  60. Pike, R. J., 1980. Control of crater morphology by gravity and target type: Mars, Earth, Moon. Proc. Lunar Planet. Sci. XI, pp. 2159–2189. Google Scholar
  61. Pike, R. J., 1988. Geomorphology of impact craters on Mercury. In: Vilas, F., Chapman, C. R., Shapley Matthews, M. (eds.), Mercury, The University of Arizona Press, Tucson. Google Scholar
  62. Riris, H., Cavanaugh, J., Sun, X., Liiva, P., Rodriguez, M., Neumann, G., 2010. The Lunar Orbiter Laser Altimeter (LOLA) on NASA’s Lunar Reconnaissance Orbiter (LRO) Mission. Proc. Int. Conf. on Space Optics, Rhodes, Greece. Google Scholar
  63. Robinson, M. S., et al., 2010. Lunar Reconnaissance Orbiter Camera (LROC) instrument overview. Space Sci. Rev. 150, 81–124. CrossRefGoogle Scholar
  64. Rubin, A. S., 1993. Tensile fracture of rock at high confining pressure: implications for dike propagation. J. Geophys. Res. 98, pp. 15919–15935. CrossRefGoogle Scholar
  65. Rükl, A., 1999. Mondatlas. Verlag Werner Dausien, Hanau. Google Scholar
  66. Salamunićcar, G., Lončarić, Grumpe, A., Wöhler, C., 2011. Hybrid method for detection of Lunar craters based on topography reconstruction from optical images. Proc. IEEE Int. Symp. on Image and Signal Processing and Analysis, Dubrovnik, Croatia, pp. 597–602. Google Scholar
  67. Salamunićcar, G., Lončarić, Mazarico, E., 2012. LU60645GT and MA132843GT catalogues of Lunar and Martian impact craters developed using a crater shape-based interpolation crater detection algorithm for topography data. Planet. Space Sci. 60(1), pp. 236–247. CrossRefGoogle Scholar
  68. Scholten, F., Oberst, J., Matz, K.-D., Roatsch, T., Wählisch, M., Robinson, M. S., and the LROC Team, 2011. GLD100—the global lunar 100 meter raster DTM from LROC WAC stereo models. Lunar Planet. Sci. XXXXII, abstract #2046. Google Scholar
  69. Smith, E. I., 1974. Rümker hills: a lunar volcanic dome complex. The Moon 10(2), pp. 175–181. CrossRefGoogle Scholar
  70. Spudis, P. D., 1993. The Geology of Multi-ring Impact Basins. Cambridge University Press, Cambridge. CrossRefGoogle Scholar
  71. Veverka, J., Helfenstein, P., Hapke, B. W., Goguen, J. D., 1988. Photometry and polarimetry of Mercury. In: Vilas, F., Chapman, C. R., Shapley Matthews, M. (eds.), Mercury, The University of Arizona Press, Tucson. Google Scholar
  72. Warell, J., 2004. Properties of the Hermean regolith: IV. Photometric parameters of Mercury and the Moon contrasted with Hapke modelling. Icarus 167(2), pp. 271–286. CrossRefGoogle Scholar
  73. Weitz, C. M., Head, J. W., 1999. Spectral properties of the Marius Hills volcanic complex and implications for the formation of lunar domes and cones. J. Geophys. Res. 104(E8), pp. 18933–18956. CrossRefGoogle Scholar
  74. Wilhelms, D. E., 1964. A photometric technique for measurement of lunar slopes. Astrogeologic Studies, Annual Progress Report, Part D: Studies for Space Flight Program, USGS Preliminary Report, pp. 1–12. Google Scholar
  75. Wilhelms, D. E., 1987. The Geologic History of the Moon. USGS Prof. Paper 1348, USGS, Flagstaff, USA. Google Scholar
  76. Wilson, L., Head, J. W., 1996. Lunar linear rilles as surface manifestations of dikes: theoretical considerations. Proc. Lunar Planet. Sci. XXVII, abstract #1445. Google Scholar
  77. Wilson, L., Head, J. W., 2002. Tharsis-radial graben systems as the surface manifestations of plume-related dike intrusion complexes: models and implications. J. Geophys. Res. 107(E8), p. 5057. CrossRefGoogle Scholar
  78. Wilson, L., Head, J. W., 2003. Lunar Gruithuisen and Mairan domes: rheology and mode of emplacement. J. Geophys. Res. 108(E2), pp. 5012–5018. CrossRefGoogle Scholar
  79. Wöhler, C., Grumpe, A., 2012. Integrated DEM construction and calibration of hyperspectral imagery: a remote sensing perspective. In: Breuss, M., Bruckstein, A., Maragos, P. (eds.), Innovations for Shape Analysis: Models and Algorithms. Revised contributions to Dagstuhl Seminar. Mathematics and Visualization, Springer, to appear. Google Scholar
  80. Wöhler, C., Hafezi, K., 2005. A general framework for three-dimensional surface reconstruction by self-consistent fusion of shading and shadow features. Pattern Recognit. 38(7), pp. 965–983. CrossRefGoogle Scholar
  81. Wöhler, C., Lena, R., 2009. Lunar intrusive domes: morphometric analysis and laccolith modelling. Icarus 204(2), pp. 381–398. CrossRefGoogle Scholar
  82. Wöhler, C., Lena, R., Bregante, M. T., Lazzarotti, P., Phillips, J., 2006a. Vertical studies about Rupes Cauchy. Selenology 25(1), pp. 7–12. Google Scholar
  83. Wöhler, C., Lena, R., Lazzarotti, P., Phillips, J., Wirths, M., Pujic, Z., 2006b. A combined spectrophotometric and morphometric study of the lunar mare dome fields near Cauchy, Arago, Hortensius, and Milichius. Icarus 183, pp. 237–264. CrossRefGoogle Scholar
  84. Wöhler, C., Lena, R., Pau, K. C., 2007a. The lunar dome complex Mons Rümker: morphometry, rheology, and mode of emplacement. Proc. Lunar Planet. Sci. XXXVIII, abstract #1091. Google Scholar
  85. Wöhler, C., Lena, R., Phillips, J., 2007b. Formation of lunar mare domes along crustal fractures: rheologic conditions, dimensions of feeder dikes, and the role of magma evolution. Icarus 189(2), pp. 279–307. CrossRefGoogle Scholar
  86. Wood, C. A., 1973. Moon: central peak heights and crater origins. Icarus 20, pp. 503–506. CrossRefGoogle Scholar
  87. Wood, C. A., Andersson, L., 1978. New morphometric data for fresh lunar craters. Proc. Lunar Planet. Sci. IX, pp. 3369–3389. Google Scholar
  88. Wu, S. S. C., Elassal, A. A., Jordan, R., Schafer, F. J., 1982. Photogrammetric application of Viking orbital photography. Planet. Space Sci. 30(1), pp. 45–55. CrossRefGoogle Scholar
  89. Wu, S. S. C., Doyle, F. J., 1990. Topographic mapping. In: Greeley, R., Batson, R. M. (eds.), Planetary Mapping, Cambridge University Press, Cambridge. Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Christian Wöhler
    • 1
  1. 1.Department of Electrical Engineering and ITTechnical University of DortmundDortmundGermany

Personalised recommendations