Skip to main content

Integrated Frameworks for Three-Dimensional Scene Reconstruction

  • Chapter
3D Computer Vision

Part of the book series: X.media.publishing ((XMEDIAPUBL))

  • 4733 Accesses

Abstract

It has been shown in the previous chapters that the problem of three-dimensional scene reconstruction can be addressed with a variety of approaches. Triangulation-based approaches rely on correspondences of points or higher-order features between several images of a scene acquired either with a moving camera or with several cameras from different viewpoints. These methods are accurate and do not require a-priori knowledge about the scene or the cameras used. On the contrary, as long as the scene points are suitably distributed they do not only yield the scene structure but also the intrinsic and extrinsic camera parameters, i.e. they perform a camera calibration simultaneously with the scene reconstruction. Triangulation-based approaches, however, are restricted to parts of the scene with a sufficient amount of texture to decide which part of a certain image belongs to which part of another image. Occlusions may occur, such that corresponding points or features are hidden in some images, the appearance of the objects may change from image to image due to perspective distortions, and in the presence of objects with non-Lambertian surface properties the observed pixel grey values may vary strongly from image to image, such that establishing correspondences between images becomes inaccurate or impossible at all. Intensity-based approaches to three-dimensional scene reconstruction exploit the observed reflectance by determining the surface normal for each image pixel. They are especially suited for textureless parts of the scene, but if several images of the scene are available, it is also possible to separate texture from shading effects. Drawbacks are that the reflectance properties of the regarded surfaces commonly need to be known, the reconstructed scene structure may be ambiguous especially with respect to its large-scale properties, and small systematic errors of the estimated surface gradients may cumulate into large depth errors on large scales. PSF-based approaches directly estimate the depth of scene points based on several images acquired at different focus settings. Depth from defocus can be easily applied and no a-priori knowledge about the scene needs to be available, but a sufficient amount of surface texture is required. Due to the fact that estimation of the PSF is sensitive with respect to pixel noise, the resulting depth values tend to be rather inaccurate. Depth from focus is very accurate but also time-consuming due to the large number of images required. These considerations illustrate that each of the described approaches has its specific advantages and drawbacks. Some of the techniques are complementary; as an example, triangulation-based methods yield three-dimensional point clouds describing textured parts of the scene while intensity-based methods may be able to reconstruct textureless regions between the points. Hence, just like the human visual system achieves a dense three-dimensional scene reconstruction based on combinations of different cues, it appears to be favourable for computer vision systems to integrate different three-dimensional scene reconstruction methods into a unifying framework. This chapter describes several approaches of this kind and discusses their specific preconditions, advantages, limitations, and preferential application domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barrois, B., Wöhler, C., 2007. 3D pose estimation based on multiple monocular cues. ISPRS Workshop Towards Benchmarking Automated Calibration, Orientation and Surface Reconstruction from Images (BenCOS), held in conjunction with CVPR 2007, Minneapolis, USA.

    Google Scholar 

  • Barron, J. T., Malik, J., 2011. High-frequency shape and albedo from shading using natural image statistics. Proc. IEEE Int. Conf. on Computer Vision and Pattern Recognition, pp. 2521–2528.

    Google Scholar 

  • Batlle, J., Mouaddib, E., Salvi, J., 1998. Recent progress in coded structured light as a technique to solve the correspondence problem: a survey. Pattern Recognit. 31(7), pp. 963–982.

    Article  Google Scholar 

  • Bhat, D. N., Nayar, S. K., 1998. Stereo and specular reflection Int. J. Comput. Vis. 26(2), pp. 91–106.

    Article  Google Scholar 

  • Bouguet, J.-Y., 2007. Camera Calibration Toolbox for Matlab. http://www.vision.caltech.edu/bouguetj/calib_doc/ (accessed September 04, 2007).

  • Canny, J., 1986. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, pp. 679–698.

    Article  Google Scholar 

  • Cryer, J.E., Tsai, P.-S., Shah, M., 1995. Integration of shape from shading and stereo. Pattern Recognit., 28(7), pp. 1033–1043.

    Article  Google Scholar 

  • d’Angelo, P., 2007. 3D Scene Reconstruction by Integration of Photometric and Geometric Methods. Doctoral Dissertation, Technical Faculty, Bielefeld University, Germany.

    Google Scholar 

  • d’Angelo, P., Wöhler, C., 2005a. 3D reconstruction of metallic surfaces by photopolarimetric analysis. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.), Proc. 14th Scand. Conf. on Image Analysis, Joensuu, Finland. Lecture Notes in Computer Science 3540, pp. 689–698, Springer, Berlin.

    Google Scholar 

  • d’Angelo, P., Wöhler, C., 2005b. 3D surface reconstruction based on combined analysis of reflectance and polarisation properties: a local approach. ISPRS Workshop Towards Benchmarking Automated Calibration, Orientation and Surface Reconstruction from Images (BenCOS), Beijing, China.

    Google Scholar 

  • d’Angelo, P., Wöhler, C., 2005c. 3D surface reconstruction by combination of photopolarimetry and depth from defocus. In: Kropatsch, W., Sablatnig, R., Hanbury, A. (eds.). Pattern Recognition, Proc. 27th DAGM Symposium, Vienna, Austria. Lecture Notes in Computer Science 3663, pp. 176–183, Springer, Berlin.

    Google Scholar 

  • d’Angelo, P., Wöhler, C., 2006. Image-based 3D surface reconstruction by combination of sparse depth data with shape from shading and polarisation. ISPRS Conf. on Photogrammetric Computer Vision, Bonn, Germany.

    Google Scholar 

  • d’Angelo, P., Wöhler, C., 2008. Image-based 3D surface reconstruction by combination of photometric, geometric, and real-aperture methods. ISPRS J. Photogramm. Remote Sens. 63(3), pp. 297–321.

    Article  Google Scholar 

  • Davis, J., Nehab, D., Ramamoorthi, R., Rusinkiewicz, S., 2005. Spacetime stereo: a unifying framework for depth from triangulation. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), pp. 296–302.

    Article  Google Scholar 

  • Decaudin, P., 1996. Cartoon Looking Rendering of 3D Scenes. INRIA Research Report 2919.

    Google Scholar 

  • Fassold, H., Danzl, R., Schindler, K., Bischof, H. 2004. Reconstruction of archaeological finds using shape from stereo and shape from shading. Proc. 9th Computer Vision Winter Workshop, Piran, Slovenia, pp. 21–30.

    Google Scholar 

  • Gavrila, D. M., Philomin, V., 1999. Real-time object detection for “smart” vehicles. Proc. Int. Conf. on Computer Vision, Kerkyra, Greece, pp. 87–93.

    Google Scholar 

  • Gottesfeld Brown, L., 1992. A survey of image registration techniques. ACM Comput. Surv. 24(4), pp. 325–376.

    Article  Google Scholar 

  • Grumpe, A., Herbort, S., Wöhler, C., 2011. 3D reconstruction of non-Lambertian surfaces with non-uniform reflectance parameters by fusion of photometrically estimated surface normal data with active range scanner data. Proc. Oldenburger 3D-Tage, Oldenburg, Germany, pp. 54–61.

    Google Scholar 

  • Grumpe, A., Wöhler, C., 2011. DEM construction and calibration of hyperspectral image data using pairs of radiance images. Proc. Int. Symp. on Image and Signal Processing and Analysis, Special Session on Image Processing and Analysis in Lunar and Planetary Science, Dubrovnik, Croatia, 2011.

    Google Scholar 

  • Hapke, B. W., 1981. Bidirectional reflectance spectroscopy 1: Theory. J. Geophys. Res. 86, pp. 3039–3054.

    Article  Google Scholar 

  • Hapke, B. W., 1984. Bidirectional reflectance spectroscopy 3: correction for macroscopic roughness. Icarus 59, pp. 41–59.

    Article  Google Scholar 

  • Hapke, B. W., 1986. Bidirectional reflectance spectroscopy 4: the extinction coefficient and the opposition effect. Icarus 67, pp. 264–280.

    Article  Google Scholar 

  • Hapke, B. W., 2002. Bidirectional reflectance spectroscopy 5: the coherent backscatter opposition effect and anisotropic scattering. Icarus 157, pp. 523–534.

    Article  Google Scholar 

  • Herbort, S., Grumpe, A. & Wöhler, C., 2011. Reconstruction of non-Lambertian surfaces by fusion of shape from shading and active range scanning. Proc. IEEE Int. Conf. Image Process.

    Google Scholar 

  • Hirschmüller, H., 2006. Stereo vision in structured environments by consistent semi-global matching. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2, pp. 2386–2393.

    Google Scholar 

  • Hogan, J., Smith, W. A. P., 2010. Refinement of digital elevation models from shadowing cues. Proc. IEEE Int. Conf. on Computer Vision and Pattern Recognition, pp. 1181–1188.

    Google Scholar 

  • Horn, B. K. P., 1986. Robot Vision. MIT Press, Cambridge.

    Google Scholar 

  • Horn, B. K. P., 1989. Height and Gradient from Shading. MIT Technical Report, AI memo, no. 1105A.

    Google Scholar 

  • Horn, B. K. P., Brooks, M., 1989. The variational approach to shape from shading. In: Horn, B. K. P., Brooks, M. (eds.), Shape from Shading. MIT Press, Cambridge.

    Google Scholar 

  • Horovitz, I., Kiryati, N., 2004. Depth from gradient fields and control points: bias correction in photometric stereo. Image Vis. Comput. 22, pp. 681–694.

    Article  Google Scholar 

  • Jiang, X., Bunke, H., 1997. Dreidimensionales Computersehen. Springer, Berlin.

    Google Scholar 

  • Jin, H., Soatto, S., Yezzi, A., 2003. Multi-view stereo beyond lambert. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 171–178.

    Google Scholar 

  • Joshi, M. V., Chaudhuri, S., 2004. Photometric stereo under blurred observations. Proc. Int. Conf. on Pattern Recognition, Cambridge, UK, vol. 3, pp. 169–172.

    Google Scholar 

  • Klette, R., Kozera, R., Schlüns, K., 1999. Shape from shading and photometric stereo methods. In: Jähne, B., Haussecker, H., Geissler, P. (eds.), Signal Processing and Pattern Recognition, Handbook of Computer Vision and Applications 2, pp. 532–590, Academic Press, San Diego.

    Google Scholar 

  • Krüger, L., Wöhler, C., Würz-Wessel, A., Stein, F., 2004. In-factory calibration of multiocular camera systems. Proc. SPIE Photonics Europe (Optical Metrology in Production Engineering), Strasbourg, pp. 126–137.

    Google Scholar 

  • Kuhl, A., 2005. Spatial Scene Reconstruction by Combined Depth-from-Defocus and Shape-from-Motion. Diplom Thesis, Faculty of Computer Science and Automation, Technical University of Ilmenau.

    Google Scholar 

  • Kuhl, A., Wöhler, C., Krüger, L., Groß, H.-M., 2006. Monocular 3D scene reconstruction at absolute scales by combination of geometric and real-aperture methods. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.), Pattern Recognition, Proc. 28th DAGM Symposium, Heidelberg, Germany. Lecture Notes in Computer Science 4174, pp. 607–616, Springer, Berlin.

    Google Scholar 

  • Lena, R., Wöhler, C., Bregante, M. T., Fattinnanzi, C., 2006. A combined morphometric and spectrophotometric study of the complex lunar volcanic region in the south of Petavius. J. R. Astron. Soc. Can. 100(1), pp. 14–25.

    Google Scholar 

  • Lim, J., Jeffrey, H., Yang, M., Kriegman, D., 2005. Passive photometric stereo from motion. Proc. IEEE Int. Conf. Computer Vision, II, pp. 1635–1642.

    Google Scholar 

  • Lohse, V., Heipke, C., Kirk, R. L., 2006. Derivation of planetary topography using multi-image shape-from-shading. Planet. Space Sci. 54, pp. 661–674.

    Article  Google Scholar 

  • Lowitzsch, S., Kaminski, J., Knauer, M. C., Häusler, G., 2005. Vision and modeling of specular surfaces. Proc. 10th Int. Fall Workshop on Vision, Modeling, and Visualization, Erlangen, Germany.

    Google Scholar 

  • Lucas, B. D., Kanade, T., 1981. An iterative image registration technique with an application to stereo vision. Proc. Int. Joint Conf. on Artificial Intelligence, Vancouver, pp. 674–679.

    Google Scholar 

  • Magda, S., Zickler, T., Kriegman, D., Belhumeur, P., 2001. Beyond Lambert: reconstructing surfaces with arbitrary BRDFs. Proc. Int. Conf. on Computer Vision, pp. 291–302.

    Google Scholar 

  • McEwen, A. S., 1985. Albedo and topography of Ius Chasma, Mars. Proc. Lunar Planet. Sci. XVI, pp. 528–529.

    Google Scholar 

  • McEwen, A. S., 1991. Photometric functions for photoclinometry and other applications. Icarus 92, pp. 298–311.

    Article  Google Scholar 

  • Myles, Z., da Vitoria Lobo, N., 1998. Recovering affine motion and defocus blur simultaneously. IEEE Trans. Pattern Anal. Mach. Intell. 20(6), pp. 652–658.

    Article  Google Scholar 

  • Nayar, S. K., Ikeuchi, K., Kanade, T., 1991. Surface reflection: physical and geometrical perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 13(7), pp. 611–634.

    Article  Google Scholar 

  • Nehab, D., Rusinkiewicz, S., Davis, J., Ramamoorthi, R., 2005. Efficiently combining positions and normals for precise 3D geometry. ACM Trans. Graph. 24, pp. 536–543.

    Article  Google Scholar 

  • Pentland, A., 1987. A new sense for depth of field. IEEE Trans. Pattern Anal. Mach. Intell. 9, pp. 523–531.

    Article  Google Scholar 

  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P., 2007. Numerical Recipes. The Art of Scientific Computing. 3rd Edition, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Rey, W. J. J., 1983. Introduction to Robust and Quasi-robust Statistical Methods. Springer, Berlin.

    Book  MATH  Google Scholar 

  • Samaras, D., Metaxas, D., Fua, P., Leclerc, Y.G., 2000. Variable Albedo surface reconstruction from stereo and shape from shading. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, I, pp. 480–487.

    Google Scholar 

  • Scharstein, D., Szeliski, R., 2001. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47(1/2/3), pp. 7–42.

    Google Scholar 

  • Schlüns, K., 1997. Shading based 3D shape recovery in the presence of shadows. Proc. First Joint Australia & New Zealand Biennial Conference on Digital Image & Vision Computing: Techniques and Applications, Auckland, New Zealand, pp. 195–200.

    Google Scholar 

  • Schowengerdt, R. A., 2006. Remote Sensing: Models and Methods for Image Processing. Academic Press, San Diego.

    Google Scholar 

  • Shi, J., Tomasi, C., 1994. Good features to track. IEEE Conf. on Computer Vision and Pattern Recognition, Seattle, USA, pp. 593–600.

    Google Scholar 

  • Simchony, T., Chellappa, R., Shao, M., 1990. Direct analytical methods for solving poisson equations in computer vision problems. IEEE Trans. Pattern Anal. Mach. Intell. 12(5), pp. 435–446.

    Article  Google Scholar 

  • Subbarao, M., 1988. Parallel depth recovery by changing camera parameters. Proc. Int. Conf. on Computer Vision, pp. 149–155.

    Google Scholar 

  • von Bank, C., Gavrila, D. M., Wöhler, C., 2003. A visual quality inspection system based on a hierarchical 3D pose estimation algorithm. In: Michaelis, B., Krell, G. (eds.), Pattern Recognition, Proc. 25th DAGM Symposium, Magdeburg, Germany. Lecture Notes in Computer Science 2781, pp. 179–186, Springer, Berlin.

    Google Scholar 

  • Wang, L., Yang, R., Davis, J. E., 2007. BRDF invariant stereo using light transport constancy. IEEE Trans. Pattern Anal. Mach. Intell. 29(9), pp. 1616–1626.

    Article  Google Scholar 

  • Ward, G. J., 1992. Measuring and modeling anisotropic reflection. Proc. Ann. Conf. on Computer Graphics and Interactive Techniques (SIGGRAPH ’92), pp. 265–272.

    Chapter  Google Scholar 

  • Wöhler, C., d’Angelo, P., 2009. Stereo image analysis of non-Lambertian surfaces. Int. J. Comput. Vis. 81(2), pp. 172–190.

    Article  Google Scholar 

  • Wöhler, C., d’Angelo, P., Krüger, L., Kuhl, A., Groß, H.-M., 2009. Monocular 3D scene reconstruction at absolute scale. ISPRS J. Photogramm. Remote Sens. 64, pp. 529–540.

    Article  Google Scholar 

  • Wöhler, C., Hafezi, K., 2005. A general framework for three-dimensional surface reconstruction by self-consistent fusion of shading and shadow features. Pattern Recognit. 38(7), pp. 965–983.

    Article  Google Scholar 

  • Wolff, L. B., 1991. Constraining object features using a polarization reflectance model. IEEE Trans. Pattern Anal. Mach. Intell. 13(7), pp. 635–657.

    Article  Google Scholar 

  • Wolff, L. B., Angelopoulou, E., 1994. Three-dimensional stereo by photometric ratios. J. Opt. Soc. Am. 11(11), pp. 3069–3078.

    Article  Google Scholar 

  • Zickler, T., Belhumeur, P. N., Kriegman, D. J., 2002. Helmholtz stereopsis: exploiting reciprocity for surface reconstruction. Proc. Europ. Conf. on Computer Vision, pp. 869–884.

    Google Scholar 

  • Zickler, T., Belhumeur, P. N., Kriegman, D. J., 2003a. Toward a stratification of Helmholtz stereopsis. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 548–554.

    Google Scholar 

  • Zickler, T., Ho, J., Kriegman, D. J., Ponce, J., Belhumeur, P. N., 2003b. Binocular Helmholtz stereopsis. Proc. Int. Conf. on Computer Vision, pp. 1411–1417.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Wöhler, C. (2013). Integrated Frameworks for Three-Dimensional Scene Reconstruction. In: 3D Computer Vision. X.media.publishing. Springer, London. https://doi.org/10.1007/978-1-4471-4150-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4150-1_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4149-5

  • Online ISBN: 978-1-4471-4150-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics