Skip to main content

Point Spread Function-Based Approaches to Three-Dimensional Scene Reconstruction

  • Chapter
3D Computer Vision

Part of the book series: X.media.publishing ((XMEDIAPUBL))

  • 4582 Accesses

Abstract

This chapter provides an outline of the concept of the point spread function of an optical system, of the depth from defocus approach, where variations of the point spread function across the set of images are exploited to estimate the depth of scene points, and of the depth from focus method, which aims for determining depth by acquiring several images at different known focus settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barrois, B., Wöhler, C., 2007. 3D pose estimation based on multiple monocular cues. ISPRS Workshop Towards Benchmarking Automated Calibration, Orientation and Surface Reconstruction from Images (BenCOS), held in conjunction with CVPR 2007, Minneapolis, USA.

    Google Scholar 

  • Bouguet, J.-Y., 2007. Camera Calibration Toolbox for Matlab. http://www.vision.caltech.edu/bouguetj/calib_doc/ (accessed September 04, 2007).

  • Chaudhuri, S., Rajagopalan, A. N., 1999. Depth from Defocus: A Real Aperture Imaging Approach. Springer, New York.

    Book  Google Scholar 

  • d’Angelo, P., Wöhler, C., 2005c. 3D surface reconstruction by combination of photopolarimetry and depth from defocus. In: Kropatsch, W., Sablatnig, R., Hanbury, A. (eds.). Pattern Recognition, Proc. 27th DAGM Symposium, Vienna, Austria. Lecture Notes in Computer Science 3663, pp. 176–183, Springer, Berlin.

    Google Scholar 

  • d’Angelo, P., Wöhler, C., 2008. Image-based 3D surface reconstruction by combination of photometric, geometric, and real-aperture methods. ISPRS J. Photogramm. Remote Sens. 63(3), pp. 297–321.

    Article  Google Scholar 

  • Harris, C., Stephens, M., 1988. A combined corner and edge detector. Proc. 4th Alvey Vision Conf., pp. 189–192.

    Google Scholar 

  • Krauß, M., 2006. Integration von Depth-from-Defocus und Shape-from-Polarisation in einen Pose-Estimation-Algorithmus. Diplom Thesis, Faculty of Computer Science and Automation, Technical University of Ilmenau.

    Google Scholar 

  • Krüger, L., Wöhler, C., Würz-Wessel, A., Stein, F., 2004. In-factory calibration of multiocular camera systems. Proc. SPIE Photonics Europe (Optical Metrology in Production Engineering), Strasbourg, pp. 126–137.

    Google Scholar 

  • Krüger, L., Wöhler, C., 2011. Accurate chequerboard corner localisation for camera calibration. Pattern Recognit. Lett. 32, pp. 1428–1435.

    Article  Google Scholar 

  • Kuhl, A., Wöhler, C., Krüger, L., Groß, H.-M., 2006. Monocular 3D scene reconstruction at absolute scales by combination of geometric and real-aperture methods. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.), Pattern Recognition, Proc. 28th DAGM Symposium, Heidelberg, Germany. Lecture Notes in Computer Science 4174, pp. 607–616, Springer, Berlin.

    Google Scholar 

  • Lucas, B. D., Kanade, T., 1981. An iterative image registration technique with an application to stereo vision. Proc. Int. Joint Conf. on Artificial Intelligence, Vancouver, pp. 674–679.

    Google Scholar 

  • McCloskey, S., Langer, M., Siddiqi, K., 2007. Evolving measurement regions for depth from defocus. Proc. Asian Conf. on Computer Vision. Lecture Notes on Computer Science 4844, pp. 858–868, Springer, Berlin.

    Google Scholar 

  • Namboodiri, V. P., Chaudhuri, S., Hadap, S., 2008. Regularized depth from defocus. Proc. IEEE Int. Conf. on Image Processing, pp. 1520–1523.

    Google Scholar 

  • Nayar, S., 1989. Shape from Focus. Carnegie Mellon University, Technical Report CMU-RI-TR-89-27.

    Google Scholar 

  • Nourbakhsh, I. R., Andre, D., Tomasi, C., Genesereth, M. R., 1997. Mobile robot obstacle avoidance via depth from focus. Robot. Auton. Syst. 22, pp. 151–158.

    Article  Google Scholar 

  • Pedrotti, F. L., 1993. Introduction to Optics. 2nd Edition, Prentice Hall, New York.

    Google Scholar 

  • Pentland, A., 1987. A new sense for depth of field. IEEE Trans. Pattern Anal. Mach. Intell. 9, pp. 523–531.

    Article  Google Scholar 

  • Schaper, D., 2002. Automated quality control for micro-technology components using a depth from focus approach. Proc. 5th IEEE Southwest Symp. on Image Analysis and Interpretation, pp. 50–54.

    Chapter  Google Scholar 

  • Shi, J., Tomasi, C., 1994. Good features to track. IEEE Conf. on Computer Vision and Pattern Recognition, Seattle, USA, pp. 593–600.

    Google Scholar 

  • Subbarao, M., 1988. Parallel depth recovery by changing camera parameters. Proc. Int. Conf. on Computer Vision, pp. 149–155.

    Google Scholar 

  • Subbarao, M., Surya, G., 1994. Depth from defocus: a spatial domain approach. Int. J. Comput. Vis. 13(3), pp. 271–294.

    Article  Google Scholar 

  • Subbarao, M., Wei, T.-C., 1992. Depth from defocus and rapid autofocusing: a practical approach. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 773–776.

    Chapter  Google Scholar 

  • Watanabe, M., Nayar, S. K., Noguchi, M., 1996. Real-time computation of depth from defocus. Proc. SPIE Three-Dimensional and Unconventional Imaging for Industrial Inspection and Metrology, SPIE 2599, pp. 14–25.

    Google Scholar 

  • Wöhler, C., d’Angelo, P., Krüger, L., Kuhl, A., Groß, H.-M., 2009. Monocular 3D scene reconstruction at absolute scale. ISPRS J. Photogramm. Remote Sens. 64, pp. 529–540.

    Article  Google Scholar 

  • Xiong, Y., Shafer, S., 1993. Depth from focusing and defocusing. DARPA Image Understanding Workshop, Palo Alto, California, USA, pp. 967–976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Wöhler, C. (2013). Point Spread Function-Based Approaches to Three-Dimensional Scene Reconstruction. In: 3D Computer Vision. X.media.publishing. Springer, London. https://doi.org/10.1007/978-1-4471-4150-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4150-1_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4149-5

  • Online ISBN: 978-1-4471-4150-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics