Flow Control in a Single-Source Discrete-Time System

  • Przemysław Ignaciuk
  • Andrzej Bartoszewicz
Part of the Communications and Control Engineering book series (CCE)


In this chapter, we direct our attention to the design of flow control algorithms for networks in which the feedback information about the current network state is accessible for source rate adaptation at discrete time instants only. In this type of networks, in addition to the effects of nonnegligible delay, the design procedures need to explicitly account for the phenomena related to finite sampling rate. Hence, in this chapter, both the modeling and the controller design are performed directly in discrete-time domain.


Transmission Rate Queue Length Delay Variation Constant Delay Nonlinear Controller 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Anderson BDO, Moore JB (1990) Optimal control: linear quadratic methods. Prentice-Hall, New YorkMATHGoogle Scholar
  2. 2.
    Arnold WF, Laub AJ (1984) Generalized eigenproblem algorithms and software for algebraic Riccati equations. Proc IEEE 72:1746–1754CrossRefGoogle Scholar
  3. 3.
    Bartoszewicz A (1996) Remarks on ‘Discrete-time variable structure control systems’. IEEE Trans Ind Electron 43:235–238Google Scholar
  4. 4.
    Bartoszewicz A (1998) Discrete time quasi-sliding mode control strategies. IEEE Trans Ind Electron 45:633–637CrossRefGoogle Scholar
  5. 5.
    Bauer P, Sichitiu M, Ernst R, Premaratne K (2001) A new class of Smith predictors for network congestion control. In: Proceedings of IEEE international conference on electronics, Circuits and Systems, vol 2, Malta, pp 685–688Google Scholar
  6. 6.
    Benner P, Byers R (1998) An exact line search method for solving generalized continuous-time algebraic Riccati equations. IEEE Trans Autom Control 43:101–107MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Blanchini F, Lo Cigno R, Tempo R (2002) Robust rate control for integrated services packet networks. IEEE/ACM Trans Netw 10:644–652CrossRefGoogle Scholar
  8. 8.
    Bohacek S, Hespanha JP, Lee J, Lim C, Obraczka K (2006) A new TCP for persistent packet reordering. IEEE/ACM Trans Netw 14:369–382CrossRefGoogle Scholar
  9. 9.
    Chu D, Lin WW, Tan CER (2006) A numerical method for a generalized algebraic Riccati equation. SIAM J Control Optim 45:1222–1250MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    De Cicco L, Mascolo S, Niculescu SI (2009) Robust stability analysis of a class of Smith predictor-based congestion control algorithms for computer networks. In: Proceedings of the 8th workshop on time-delay system, Sinaia, RomaniaGoogle Scholar
  11. 11.
    Edwards C, Spurgeon SK (1998) Sliding mode control: theory and applications. Taylor & Francis, LondonGoogle Scholar
  12. 12.
    Gao W, Wang Y, Homaifa A (1995) Discrete-time variable structure control systems. IEEE Trans Ind Electron 42:117–122CrossRefGoogle Scholar
  13. 13.
    García P, Albertos P, Hägglund T (2006) Control of unstable non-minimum-phase delayed systems. J Process Control 16:1099–1111CrossRefGoogle Scholar
  14. 14.
    Gessing R (2008) Parallel compensator versus Smith predictor for control of the plants with delay. Bull Pol Acad Sci – Tech Sci 56:339–345Google Scholar
  15. 15.
    Golo G, Milosavljević Č (2000) Robust discrete-time chattering free sliding mode control. Syst Control Lett 41:19–28MATHCrossRefGoogle Scholar
  16. 16.
    Guo CH, Laub AJ (2000) On a Newton-like method for solving algebraic Riccati equations. SIAM J Matrix Anal Appl 21:694–698MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Higham NJ, Kim HM (2001) Solving a quadratic matrix equation by Newton’s method with exact line searches. SIAM J Matrix Anal Appl 23:303–313MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Johnson MA, Grimble MJ (1987) Recent trends in linear optimal quadratic multivariable control system design. IEE Rev 134:53–71MATHGoogle Scholar
  19. 19.
    Kaczorek T (2002) Positive 1D and 2D Systems. Springer, LondonMATHCrossRefGoogle Scholar
  20. 20.
    Lewis FL, Syrmos VL (1995) Optimal control, 2nd edn. Wiley, New YorkGoogle Scholar
  21. 21.
    Long JH, Hu XY, Zhang L (2008) Improved Newton’s method with exact line searches to solve quadratic matrix equation. J Comput Appl Math 222:645–654MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Michiels W, Niculescu S (2007) Stability and stabilization of time-delay systems: an eigenvalue-based approach. SIAM, PhiladelphiaMATHCrossRefGoogle Scholar
  23. 23.
    Milosavljević Č, Peruničić-Draženović B, Veselić B, Mitić D (2006) Sampled data quasi-sliding mode control strategies. In: Proceedings of the IEEE international conference of industrial technology, pp 2640–2645Google Scholar
  24. 24.
    Mirkin L, Raskin N (2003) Every stabilizing dead-time controller has an observer-predictor-based structure. Automatica 39:1747–1754MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Natori K, Ohnishi K (2006) A design method of communication disturbance observer for time delay compensation. In: Proceedings of the annual conference IEEE Industrial Electronics Society, Paris, France, pp 730–735Google Scholar
  26. 26.
    Natori K, Ohnishi K (2008) A design method of communication disturbance observer for time-delay compensation, taking the dynamic property of network disturbance into account. IEEE Trans Ind Electron 55:2152–2168CrossRefGoogle Scholar
  27. 27.
    Natori K, Oboe R, Ohnishi K (2008) Stability analysis and practical design procedure of time delayed control systems with communication disturbance observer. IEEE Trans Ind Inform 4:185–197CrossRefGoogle Scholar
  28. 28.
    Nortcliffe A, Love J (2004) Varying time delay Smith predictor process controller. ISA Trans 43:61–71CrossRefGoogle Scholar
  29. 29.
    Paxson V (1999) End-to-end Internet packet dynamics. IEEE/ACM Trans Netw 7:277–292CrossRefGoogle Scholar
  30. 30.
    Ogata K (1995) Discrete-time control systems, 2nd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  31. 31.
    Palmor ZJ (1996) Time-delay compensation – Smith predictor and its modifications. In: Levine WS (ed) The control handbook. CRC Press, Boca RatonGoogle Scholar
  32. 32.
    Pietrabissa A, Delli Priscoli F, Fiaschetti A, Di Paolo F (2006) A robust adaptive congestion control for communication networks with time-varying delays. In: Proceedings of 2006 IEEE international conference on control applications, Munich, Germany, pp 2093–2098Google Scholar
  33. 33.
    Quet PF, Ataşlar B, İftar A, Özbay H, Kalyanaraman S, Kang T (2002) Rate-based flow controllers for communication networks in the presence of uncertain time-varying multiple time-delays. Automatica 38:917–928MATHCrossRefGoogle Scholar
  34. 34.
    Ren T, Gao Z, Kong W, Jing Y, Yang M, Dimirovski GM (2008) Performance and robustness analysis of a fuzzy immune flow controller in ATM networks with time-varying multiple time delays. J Control Theory Appl 6:253–258MathSciNetCrossRefGoogle Scholar
  35. 35.
    Sichitiu ML, Bauer PH, Premaratne K (2003) The effect of uncertain time-variant delays in ATM networks with explicit rate feedback: a control theoretic approach. IEEE/ACM Trans Netw 11:628–637CrossRefGoogle Scholar
  36. 36.
    Smith OJM (1959) A controller to overcome dead time. ISA J 6:28–33Google Scholar
  37. 37.
    Vatanski N, Georges JP, Aubrun Ch, Rondeau E, Jämsä-Jounela SL (2009) Networked control with delay measurement and estimation. Control Eng Pract 17:231–244CrossRefGoogle Scholar
  38. 38.
    Zhong QC (2006) Robust control of time-delay systems. Springer, LondonMATHGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Przemysław Ignaciuk
    • 1
  • Andrzej Bartoszewicz
    • 2
  1. 1.Institute of Information TechnologyTechnical University of ŁódźŁódźPoland
  2. 2.Institute of Automatic ControlTechnical University of ŁódźŁódźPoland

Personalised recommendations