Skip to main content

Optimal Placement of Visco-Elastic Dampers and Supporting Members Under Variable Critical Excitations

  • Chapter
  • First Online:
Book cover Improving the Earthquake Resilience of Buildings

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

Abstract

The concept of performance-based design has recently been introduced and is well accepted in the current structural design practice of buildings. In earthquake-prone countries, the philosophy of earthquake-resistant design to resist ground shaking with sufficient stiffness and strength of a building itself has also been accepted as a relevant structural design concept for many years. On the other hand, a new strategy based on the concept of active and passive structural control has been introduced rather recently in order to provide structural designers with powerful tools for performance-based design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Constantinou MC, Tadjbakhsh IG (1983) Optimum design of a first story damping system. Comput Struct 17(2):305–310

    Article  Google Scholar 

  2. Gurgoze M, Muller PC (1992) Optimal positioning of dampers in multi-body systems. J Sound Vib 158(3):517–530

    Article  Google Scholar 

  3. Zhang RH, Soong TT (1992) Seismic design of viscoelastic dampers for structural applications. J Struct Eng ASCE 118(5):1375–1392

    Google Scholar 

  4. Hahn GD, Sathiavageeswaran KR (1992) Effects of added-damper distribution on the seismic response of buildings. Comput Struct 43(5):941–950

    Article  Google Scholar 

  5. De Silva CW (1981) An algorithm for the optimal design of passive vibration controllers for flexible systems. J Sound Vib 74(4):495–502

    Article  Google Scholar 

  6. Tsuji M, Nakamura T (1996) Optimum viscous dampers for stiffness design of shear buildings. J Struct Des Tall Build 5:217–234

    Article  Google Scholar 

  7. Takewaki I (1997) Optimal damper placement for minimum transfer functions. Earthq Eng Struct Dyn 26(11):1113–1124

    Article  Google Scholar 

  8. Takewaki I (1999) Dynamic structural design: inverse problem approach. WIT Press, Southampton

    Google Scholar 

  9. Takewaki I, Yoshitomi S (1998) Effects of support stiffnesses on optimal damper placement for a planar building frame. J Struct Des Tall Build 7(4):323–336

    Article  Google Scholar 

  10. Takewaki I, Yoshitomi S, Uetani K, Tsuji M (1999) Non-monotonic optimal damper placement via steepest direction search. Earthq Eng Struct Dyn 28(6):655–670

    Article  Google Scholar 

  11. Takewaki I (1998) Optimal damper positioning in beams for minimum dynamic compliance. Comput Meth Appl Mech Eng 156(1–4):363–373

    Article  MATH  Google Scholar 

  12. Takewaki I (2000) Optimal damper placement for planar building frames using transfer functions. Struct Multidisc Optim 20(4):280–287

    Article  Google Scholar 

  13. Takewaki I (2000) Optimal damper placement for critical excitation. Probab Eng Mech 15(4):317–325

    Article  Google Scholar 

  14. Takewaki I (2009) Building control with passive dampers: optimal performance-based design for earthquakes. John Wiley & Sons, Asia, Singapore

    Google Scholar 

  15. Lopez Garcia D (2001) A simple method for the design of optimal damper configurations in MDOF structures. Earthq Spectra 17(3):387–398

    Article  MathSciNet  Google Scholar 

  16. Lopez Garcia D, Soong TT (2002) Efficiency of a simple approach to damper allocation in MDOF structures. J Struct Control 9(1):19–30

    Article  Google Scholar 

  17. Liu W, Tong M, Wu X, Lee G (2003) Object-oriented modeling of structural analysis and design with application to damping device configuration. J Comput Civ Eng ASCE 17(2):113–122

    Google Scholar 

  18. Singh MP, Moreschi LM (2001) Optimal seismic response control with dampers. Earthq Eng Struct Dyn 30(4):553–572

    Article  Google Scholar 

  19. Singh MP, Moreschi LM (2002) Optimal placement of dampers for passive response control. Earthq Eng Struct Dyn 31(4):955–976

    Article  Google Scholar 

  20. Kiu W, Tong M, Wu Y, Lee G (2004) Optimized damping device configuration design of a steel frame structure based on building performance indices. Earthq Spectra 20(1):67–89

    Article  Google Scholar 

  21. Lavan O, Levy R (2005) Optimal design of supplemental viscous dampers for irregular shear-frames in the presence of yielding. Earthq Eng Struct Dyn 34(8):889–907

    Article  Google Scholar 

  22. Lavan O, Levy R (2006) Optimal design of supplemental viscous dampers for linear framed structures. Earthq Eng Struct Dyn 35(3):337–356

    Article  Google Scholar 

  23. Park J-H, Kim J, Min K-W (2004) Optimal design of added viscoelastic dampers and supporting braces. Earthq Eng Struct Dyn 33(4):465–484

    Article  Google Scholar 

  24. Trombetti T, Silvestri S (2004) Added viscous dampers in shear-type structures: the effectiveness of mass proportional damping. J Earthq Eng 8(2):275–313

    Google Scholar 

  25. Uetani K, Tsuji M, Takewaki I (2003) Application of optimum design method to practical building frames with viscous dampers and hysteretic dampers. Eng Struct 25(5):579–592

    Article  Google Scholar 

  26. Wongprasert N, Symans MD (2004) Application of a genetic algorithm for optimal damper distribution within the nonlinear seismic benchmark building. J Eng Mech ASCE 130(4):401–406

    Google Scholar 

  27. Xu ZD, Shen YP, Zhao HT (2003) A synthetic optimization analysis method on structures with viscoelastic dampers. Soil Dyn Earthq Eng 23:683–689

    Article  Google Scholar 

  28. Xu ZD, Zhao HT, Li AQ (2004) Optimal analysis and experimental study on structures with viscoelastic dampers. J Sound Vib 273(3):607–618

    Article  MathSciNet  Google Scholar 

  29. Lavan O, Levy R (2006) Optimal peripheral drift control of 3D irregular framed structures using supplemental viscous dampers. J Earthq Eng 10(6):903–923

    Google Scholar 

  30. Silvestri S, Trombetti T (2007) Physical and numerical approaches for the optimal insertion of seismic viscous dampers in shear-type structures. J Earthq Eng 11(5):787–828

    Article  Google Scholar 

  31. Levy R, Lavan O (2006) Fully stressed design of passive controllers in framed structures for seismic loadings. Struct Multidisc Optim 32(6):485–498

    Article  Google Scholar 

  32. Liu W, Tong M, Lee G (2005) Optimization methodology for damper configuration based on building performance indices. J Struct Eng ASCE 131(11):1746–1756

    Google Scholar 

  33. Tan P, Dyke SJ, Richardson A, Abdullah M (2005) Integrated device placement and control design in civil structures using genetic algorithms. J Struct Eng ASCE 131(10):1489–1496

    Google Scholar 

  34. Marano GC, Trentadue F, Greco R (2007) Stochastic optimum design criterion for linear damper devices for seismic protection of building. Struct Multidisc Optim 33:441–455

    Article  Google Scholar 

  35. Attard TL (2007) Controlling all interstory displacements in highly nonlinear steel buildings using optimal viscous damping. J Struct Eng ASCE 133(9):1331–1340

    Google Scholar 

  36. Aydin E, Boduroglub MH, Guney D (2007) Optimal damper distribution for seismic rehabilitation of planar building structures. Eng Struct 29:176–185

    Article  Google Scholar 

  37. Cimellaro GP (2007) Simultaneous stiffness-damping optimization of structures with respect to acceleration, displacement and base shear. Eng Struct 29:2853–2870

    Article  Google Scholar 

  38. Cimellaro GP, Retamales R (2007) Optimal softening and damping design for buildings. Struct Control Health Monit 14(6):831–857

    Article  Google Scholar 

  39. Viola E, Guidi F (2008) Influence of the supporting braces on the dynamic control of buildings with added viscous dampers. Struct Control Health Monit 16(3):267–286

    Article  Google Scholar 

  40. Wang Y, Dyke S (2008) Smart system design for a 3D base-isolated benchmark building. Struct Control Health Monit 30:939–957

    Article  Google Scholar 

  41. Takewaki I (2002) Robust building stiffness design for variable critical excitations. J Struct Eng ASCE 128(12):1565–1574

    Google Scholar 

  42. Takewaki I (2006) Critical excitation methods in earthquake engineering. Elsevier Science, Amsterdam

    Google Scholar 

  43. Drenick RF (1970) Model-free design of aseismic structures. J Eng Mech Div ASCE 96(EM4):483–493

    Google Scholar 

  44. Fox RL, Kapoor MP (1968) Rates of change of eigenvalues and eigenvectors. AIAA J 6:2426–2429

    Article  MATH  Google Scholar 

  45. Fujita K, Moustafa A, Takewaki I (2010) Optimal placement of viscoelastic dampers and supporting members under variable critical excitations. Earthq Struct 1(1):43–67

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendix 1: Equivalent Stiffness and Damping Coefficient of Damper Unit Including Supporting Member in N-Model (Eqs. (12.1) and (12.2))

Let δ Fi , δ 1i , δ 2i denote the interstory drift, the internal nodal displacement in the Maxwell model in Fig. 12.2 relative to the (i−1)th floor and the displacement of the node between the damper unit and the supporting member in the i-th story, i.e. \( \delta_{{{\text{F}}i}} = u_{{{\text{F}}i}} - u_{{{\text{F(}}i - 1)}} \), \( \delta_{1i} = u_{1i} - u_{{{\text{F(}}i - 1)}} \) and \( \delta_{2i} = u_{2i} - u_{{{\text{F(}}i - 1)}} \). The equations of dynamic equilibrium of the 3N model can be derived as

$$ k_{{{\text{b}}i}} \delta_{2i} = p_{i} \left(t \right) $$
(12.57)
$$ k_{{{\text{M}}i}} (\delta_{1i} - \delta_{2i}) + k_{{{\text{V}}i}} (\delta_{{{\text{F}}i}} - \delta_{2i}) + c_{{{\text{V}}i}} (\dot{\delta}_{{{\text{F}}i}} - \dot{\delta}_{2i}) - k_{{{\text{b}}i}} \delta_{2i} = 0 $$
(12.58)
$$ c_{{{\text{M}}i}} (\dot{\delta}_{{{\text{F}}i}} - \dot{\delta}_{1i}) - k_{{{\text{M}}i}} (\delta_{1i} - \delta_{2i}) = 0 $$
(12.59)

In Eq. (12.57) \( p_{i} \left(t \right) \) denotes the internal force of the supporting member in the i-th story. Let \( \Updelta_{{{\text{F}}i}} (\omega),\Updelta_{1i} (\omega),\Updelta_{2i} (\omega),P_{i} (\omega) \) denote the Fourier transforms of \( \delta_{{{\text{F}}i}} (t) \), \( \delta_{1i} (t) \), \( \delta_{2i} (t) \)and \( p_{i} (t) \). From Eq. (12.57), \( \Updelta_{2i} (\omega) \) can be described by \( P_{i} (\omega)/k_{{{\text{b}}i}} \). By substituting this equation into Eq. (12.59) expressed in frequency domain, we can obtain \( \Updelta_{1i} (\omega) \) as

$$ \Updelta_{1i} (\omega) = \frac{{{\text{i}}\omega k_{{{\text{b}}i}} c_{{{\text{M}}i}} \Updelta_{{{\text{F}}i}} (\omega) + k_{{{\text{M}}i}} P_{i} (\omega)}}{{k_{{{\text{b}}i}} \left({{\text{i}}\omega c_{{{\text{M}}i}} + k_{{{\text{M}}i}}} \right)}} $$
(12.60)

Substitution of these equations for \( \Updelta_{1i} (\omega) \) and \( \Updelta_{2i} (\omega) \) into Eq. (12.58) in frequency domain leads to the following relationship between \( \Updelta_{{{\text{F}}i}} (\omega) \) and \( P_{i} \left(\omega \right) \).

$$ \begin{gathered} \left({\frac{{{\text{i}}\omega k_{{{\text{b}}i}} k_{{{\text{M}}i}} c_{{{\text{M}}i}}}}{{k_{{{\text{M}}i}} + {\text{i}}\omega c_{{{\text{M}}i}}}} + k_{{{\text{b}}i}} k_{{{\text{V}}i}} + {\text{i}}\omega k_{{{\text{b}}i}} c_{{{\text{V}}i}}} \right)\Updelta_{{{\text{F}}i}} \left(\omega \right) \hfill \\ \quad \quad = \left\{{\left({k_{{{\text{b}}i}} + k_{{{\text{M}}i}} + k_{{{\text{V}}i}} + {\text{ i}}\omega c_{{{\text{V}}i}}} \right) - \frac{{k_{{{\text{M}}i}}^{2}}}{{k_{{{\text{M}}i}} + {\text{i}}\omega c_{{{\text{M}}i}}}}} \right\}P_{i} \left(\omega \right) \hfill \\ \end{gathered} $$
(12.61)

After some manipulations, Eq. (12.61) can be rewritten as

$$ \frac{{k_{{{\text{b}}i}} k_{{{\text{V}}i}} k_{{{\text{M}}i}}^{2} + \omega^{2} k_{{{\text{b}}i}} c_{{{\text{M}}i}}^{2} \left({k_{{{\text{V}}i}} + k_{{{\text{M}}i}}} \right) + {\text{i}}\omega k_{{{\text{b}}i}} \left\{{k_{{{\text{M}}i}}^{2} \left({c_{{{\text{V}}i}} + c_{{{\text{M}}i}}} \right) + \omega^{2} c_{{{\text{V}}i}} c_{{{\text{M}}i}}^{2}} \right\}}}{{\left({(k_{{{\text{b}}i}} + k_{{{\text{V}}i}} )k_{{{\text{M}}i}}^{2} + (k_{{{\text{b}}i}} + k_{{{\text{M}}i}} + k_{{{\text{V}}i}} )\omega^{2} c_{{{\text{M}}i}}^{2}} \right) + {\text{ i}}\omega \left\{{k_{{{\text{M}}i}}^{2} \left({c_{{{\text{V}}i}} + c_{{{\text{M}}i}}} \right) + \omega^{2} c_{{{\text{V}}i}} c_{{{\text{M}}i}}^{2}} \right\}}}\Updelta_{{{\text{F}}i}} \left(\omega \right) = P_{i} \left(\omega \right) $$
(12.62)

On the other hand, the force–displacement relation of the general Kelvin–Voigt model can be given by

$$ \left({K_{{{\text{E}}i}} + {\text{i}}\omega C_{{{\text{E}}i}}} \right)\Updelta_{{{\text{F}}i}} \left(\omega \right) = P_{i} \left(\omega \right) $$
(12.63)

where K Ei and C Ei are the equivalent stiffness and the damping coefficient of the frequency-dependent Kelvin–Voigt model in the i-th story defined by Eqs. (12.1) and (12.2). By comparing Eqs. (12.62) and (12.63), Eqs. (12.1) and (12.2) can be derived.

Appendix 2: Transformation Matrix from the Nodal Displacements to the Relative Displacements Between both Ends of Supporting Members

For evaluating the axial force of the supporting member, the relative displacements u b between both ends of supporting members are expressed in terms of nodal displacements u full by

$$ {\mathbf{u}}_{{\mathbf{b}}} = {\mathbf{T}}_{{\mathbf{b}}} {\mathbf{u}}_{\text{full}} $$
(12.64)

In Eq. (12.64) T b denotes the transformation matrix. In the case of the 3-story building model, T b can be given by

$$ {\mathbf{T}}_{{\mathbf{b}}} = \left[{\begin{array}{*{20}c} 0 & 0 & 0 & {} & {} & {} & {} & {} & {} \\ 0 & 1 & 0 & {} & {[{\mathbf{0}}]} & {} & {} & {[{\mathbf{0}}]} & {} \\ 0 & 0 & 0 & {} & {} & {} & {} & {} & {} \\ 0 & 0 & 0 & 0 & 0 & 0 & {} & {} & {} \\ {- 1} & 0 & 0 & 0 & 1 & 0 & {} & {[{\mathbf{0}}]} & {} \\ 0 & 0 & 0 & 0 & 0 & 0 & {} & {} & {} \\ {} & {} & {} & 0 & 0 & 0 & 0 & 0 & 0 \\ {} & {[{\mathbf{0}}]} & {} & {- 1} & 0 & 0 & 0 & 1 & 0 \\ {} & {} & {} & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array}} \right] $$
(12.65)

Appendix 3: Second-Order Sensitivities of the Equivalent Stiffness and Damping Coefficient

The second-order sensitivities of the equivalent stiffness and damping coefficient for the N model can be derived as follows.

$$ \begin{aligned} K_{{\rm E}i,jk} &= - 2k_{{\rm b}i}^{2} \frac{{\left( {c_{1}^{2} c_{2} S_{{\rm d}i}^{3} + 3c_{1}^{2} c_{3} k_{{\rm b}i} S_{{\rm d}i}^{2} + 3c_{1} c_{2} c_{3} k_{{\rm b}i}^{2} S_{{\rm d}i}+ c_{3} (2c_{2}^{2} - c_{1} c_{3} )k_{{\rm b}i}^{3} } \right)}}{{(c_{1} S_{{\rm d}i}^{2} + 2c_{2} k_{{\rm b}i} S_{{\rm d}i} + c_{3} k_{{\rm b}i}^{2} )^{3} }} \\K_{\rm{E}i}^{,jk} &= \left( {S_{{\rm d}i}^{2}/k_{{\rm b}i}^{2} } \right)K_{{\rm E}i,jk} \\K_{{\rm E}i_{,j}}^{,k} &= 2k_{{\rm b}i} S_{{\rm d}i} \frac{{c_{1}^{2} c_{2} S_{{\rm d}i}^{3} + 3c_{1}^{2} c_{3} k_{{\rm b}i}S_{{\rm d}i}^{2} + 3c_{1} c_{2} c_{3} k_{{\rm b}i}^{2} S_{{\rm b}i} +\left( {2c_{2}^{2} c_{3} - c_{1} c_{2}^{2} }\right)k_{{\rm b}i}^{2} S_{{\rm d}i} }}{{(c_{1} S_{{\rm d}i}^{2} +2c_{2} k_{{\rm b}i} S_{{\rm d}i}+ c_{3} k_{{\rm b}i}^{2} )^{3} }} \\C_{{\rm E}i,jk} &= - 2k_{{\rm b}i}^{2} c_{5} \frac{{c_{1} c_{3}k_{{\rm b}i}^{2} S_{{\rm d}i} + 2c_{2} c_{3} k_{{\rm b}i}^{3} +c_{1}^{2} S_{{\rm d}i}^{3} }}{{(c_{1} S_{{\rm d}i}^{2} + 2c_{2}k_{{\rm b}i}S_{{\rm d}i} + c_{3} k_{{\rm b}i}^{2} )^{3} }} \\C_{{\rm E}i}^{,jk} &= - 2S_{{\rm d}i}^{2} c_{5} \frac{{3c_{1} c_{3}k_{{\rm b}i}^{2} S_{{\rm d}i} + 2c_{2} c_{3} k_{{\rm b}i}^{3} - c_{1}^{2} S_{{\rm d}i}^{3} }}{{(c_{1} S_{{\rm d}i}^{2} + 2c_{2}k_{{\rm b}i}S_{{\rm d}i} + c_{3} k_{{\rm b}i}^{2} )^{3} }} \\C_{{\rm E}i,j}^{,k} &= - 2k_{{\rm b}i} S_{{\rm d}i} c_{5}\frac{{2c_{2} c_{3} k_{{\rm b}i}^{3} + c_{1} c_{3} k_{{\rm b}i}^{2}S_{{\rm d}i} + c_{1}^{2} S_{{\rm d}i}^{3} }}{{(c_{1} S_{{\rm d}i}^{2}+ 2c_{2} k_{{\rm b}i} S_{{\rm d}i} + c_{3} k_{{\rm b}i}^{2} )^{3} }}\end{aligned} $$
(12.66a–f)

where c 1, c 2, c 3 are given by Eq. (12.49c, d, e).

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Takewaki, I., Moustafa, A., Fujita, K. (2013). Optimal Placement of Visco-Elastic Dampers and Supporting Members Under Variable Critical Excitations. In: Improving the Earthquake Resilience of Buildings. Springer Series in Reliability Engineering. Springer, London. https://doi.org/10.1007/978-1-4471-4144-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4144-0_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4143-3

  • Online ISBN: 978-1-4471-4144-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics