Skip to main content

Enumeration Problems: A Bridge Between Planar Metamorphic Robots in Engineering and Polyforms in Mathematics

  • Conference paper
  • First Online:
Book cover Advances in Reconfigurable Mechanisms and Robots I

Abstract

This paper relates two problems: enumeration of metamorphic robots in mechanical engineering and enumeration of polyforms in mathematics. First, a review of the two problems is presented. Some particularities of the enumeration of metamorphic robots and theoretical results about the enumeration of polyforms are described in order to create a bridge between these problems. Then, based on the results and the complexity of the enumeration of polyforms, some directions for further works on the planar enumeration of metamorphic robots are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chirikjian G (1994) Kinematics of a metamorphic robotic system. In: IEEE international conference on robotics and automation, pp 449–455

    Google Scholar 

  2. Chirikjian G, Pamecha A (1996) Bounds for self-reconfiguration of metamorphic robots. In: IEEE international conference on robotics and automation, vol. 2, pp 1452–1457

    Google Scholar 

  3. Pamecha A, Chiang C, Stein D, Chirikjian G (1996) Design and implementation of metamorphic robots. In: ASME design engineering technical conference and computers in engineering conference, pp 1–10

    Google Scholar 

  4. Dumitrescu A, Suzuki I, Yamashita M (2002) High speed formations of reconfigurable modular robotic systems. In: IEEE international conference on robotics and automation, vol 1, pp 123–128

    Google Scholar 

  5. Chiang C, Chirikjian G (2001) Modular robot motion planning using similarity metrics. Auton Robot 10(1):91–106

    Article  MATH  Google Scholar 

  6. Abrams A, Ghrist R (2004) State complexes for metamorphic robots. Int J Robot Res 23(7):811–830

    Article  Google Scholar 

  7. Walter J, Welch J, Amato N (2004) Distributed reconfiguration of metamorphic robot chains. Distrib Comput 17(2):171–189

    Article  Google Scholar 

  8. Walter J, Welch J, Amato N (2002) Concurrent metamorphosis of hexagonal robot chains into simple connected configurations. IEEE Trans Robot Autom 18(6):945–956

    Article  Google Scholar 

  9. Rus D, Vona M (2001) Crystalline robots: self-reconfiguration with compressible unit modules. Auton Robot 10(1):107–124

    Article  MATH  Google Scholar 

  10. Yoshida E, Murata S, Kurokawa H, Tomita K, Kokaji S (1998) A distributed reconfiguration method for 3D homogeneous structure. In: IEEE/RSJ international conference on intelligent robots and systems, vol 2, pp 852–859

    Google Scholar 

  11. Yim M, Lamping J, Mao E, Chase J (1997) Rhombic dodecahedron shape for self-assembling robots. Xerox PARC, SPL TechReport P9710777

    Google Scholar 

  12. Yim M, Zhang Y, Lamping J, Mao E (2001) Distributed control for 3D metamorphosis. Auton Robot 10(1):41–56

    Article  MATH  Google Scholar 

  13. Chen I, Burdick J (1998) Enumerating the non-isomorphic assembly configurations of modular robotic systems. Int J Robot Res 17(7):702–719

    Article  Google Scholar 

  14. Chitta S, Ostrowski J (2006) Enumeration and motion planning for modular mobile robots. Department of Computer and Information Science, University of Pennsylvania, Technical report no. MS-CIS-01-08

    Google Scholar 

  15. Martins D, Simoni R (2009) Enumeration of planar metamorphic robots configurations. In: ASME/IFToMM international conference on ReMAR2009, pp 610–618

    Google Scholar 

  16. Redelmeier D (1981) Counting polyominoes: yet another attack. Discrete Math 36(3):191–203

    Article  MathSciNet  MATH  Google Scholar 

  17. I. Jensen (2003) Counting polyominoes: a parallel implementation for cluster computing. In: Computational science—ICCS 2003, pp 698–698

    Google Scholar 

  18. Klarxer D (1967) Cell growth problems. Can J Math 19(4):851

    Article  Google Scholar 

  19. Del Lungo A, Frosini A, Rinaldi S (2003) Eco method and the exhaustive generation of convex polyominoes. In: DMTCS, Springer, pp 129–140

    Google Scholar 

  20. Feretic S (2009) Polyominoes with nearly convex columns: a semidirected model. Arxiv preprint arXiv:0910.4573

    Google Scholar 

  21. Fukuda H, Mutoh N, Nakamura G, Schattschneider D (2008) Enumeration of polyominoes, polyiamonds and polyhexes for isohedral tilings with rotational symmetry. Lect Notes Comput Sci 4535:68–78

    Google Scholar 

  22. Barequet G, Moffie M, Ribó A, Rote G (2005) Counting polyominoes on twisted cylinders. In: Felsner S (ed) EuroComb2005. Discrete mathematics and theoretical computer science proceedings AE, Citeseer

    Google Scholar 

  23. Klarner D, Rivest R (1973) A procedure for improving the upper bound for the number of n-ominoes. Can J Math 25(3), 585–602

    Google Scholar 

  24. Jensen I, Guttmann A (2000) Statistics of lattice animals (polyominoes) and polygons. J Phys A Math Gen 33:L257

    Article  MathSciNet  MATH  Google Scholar 

  25. Voge M, Guttmann A (2003) On the number of hexagonal polyominoes. Theor Comput Sci 307(2):433–453

    Article  MathSciNet  Google Scholar 

  26. Lunnon W (1971) Counting polyominoes. In: Atkin AOL, Birch BJ (eds) Computers in number theory, Academic Press, London, pp 347–372

    Google Scholar 

  27. Caporossi G, Hansen P (1998) Enumeration of polyhex hydrocarbons to h = 21. J Chem Inf Comp Sci 38(4):610–619

    Article  Google Scholar 

  28. Müller W, Szymanski K, Knop J, Nikolić S, Trinajstić N (1990) On the enumeration and generation of polyhex hydrocarbons. J Comput Chem 11(2):223–235

    Article  MathSciNet  Google Scholar 

  29. Yim M (1994) Locomotion with a unit-modular reconfigurable robot. PhD dissertation, Stanford University

    Google Scholar 

  30. Kerber A, Laue R, Meringer M, Rücker C (2004) Molecules in silico: the generation of structural formulae and its applications. J Comput Chem Jpn 3(3):85–96

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by two Brazilian Government Agencies: CNPq and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anelize Zomkowski Salvi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this paper

Cite this paper

Salvi, A.Z., Simoni, R., Martins, D. (2012). Enumeration Problems: A Bridge Between Planar Metamorphic Robots in Engineering and Polyforms in Mathematics. In: Dai, J., Zoppi, M., Kong, X. (eds) Advances in Reconfigurable Mechanisms and Robots I. Springer, London. https://doi.org/10.1007/978-1-4471-4141-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4141-9_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4140-2

  • Online ISBN: 978-1-4471-4141-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics