Skip to main content

Structural Representation of Reconfigurable Linkages

  • Conference paper
  • First Online:
Advances in Reconfigurable Mechanisms and Robots I

Abstract

This paper presents adjacency matrix originated three-dimensional matrix for structural representation of mechanisms by integrating binary string in the sense of displacement subgroup theory. The improved elementary matrix operation for expressing of topological transformation of metamorphic mechanism is integrated in the three-dimensional matrix representation. A novel reconfigurable eight-bar linkage employing variable-axis revolute joints is proposed and the three-dimensional matrix for each working phase is expressed to reveal the distinct geometry. The improved elementary matrix operation is used to express the topological transformation of a metamorphic eight-bar linkage and to identify the effectiveness of the operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dai JS, Rees Jones J (1998) Mobility in metamorphic mechanisms of foldable/erectable kinds. In: Proceedings of the 25th ASME biennial mechanisms and robotics conference, DETC-5902. Atlanta, USA

    Google Scholar 

  2. Wohlhart K (1996) Kinematotropic Linkages Recent Advances in Robot Kinematics. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  3. Calletti C, Fanghella P (2001) Single-loop kinematotropic mechanism. Mech Mach Theory 36:743–761

    Article  MathSciNet  Google Scholar 

  4. Fanghella P, Galletti C, Giannotti E (2006) Parallel robots that change their group of motion. Advances in Robot Kinematics. Springer, Netherlands, 49–56

    Google Scholar 

  5. Gogu G (2009) Branching singularities in kinematotropic parallel mechanisms. In: Proceedings of the 5th international workshop on computational kinematics, Duisburg, Germanym, pp 341–348

    Google Scholar 

  6. Dai JS (2005) Rees Jones, J.: Matrix Representation of Topological Changes in Metamorphic Mechanisms. ASME. J Mech Des 127:837–840

    Article  Google Scholar 

  7. Lan ZH, Du R (2008) Representation of Topological Changes in Metamorphic Mechanisms With Matrices of the Same Dimension. ASME J Mech Des 130:074501

    Article  Google Scholar 

  8. Wang DL, Dai JS (2007) Theoretical Foundation of Metamorphic Mechanism and Its Synthesis. Chin J Mech Eng 43:32–42

    Google Scholar 

  9. Tsai LW (2001) Mechanism Design: Enumeration of Kinematic Structures According to Function. CRC Press, New York

    Google Scholar 

  10. Yan H-S, Kuo C-H (2006) Topological Representations and Characteristics of Variable Kinematic Joints. ASME J Mech Des 128:384–391

    Article  Google Scholar 

  11. Kuo CH (2004) Structural characteristics of mechanisms with variable topologies taking into account the configuration singularity. MS thesis, National Cheng Kung University, Tainan, Taiwan

    Google Scholar 

  12. Zeng Q, Fang YF (2009) Structural Synthesis of Serial-Parallel Hybrid Mechanisms Based on Representation and Operation of Logical Matrix. J Mech Robotics 1(4):041003

    Article  MathSciNet  Google Scholar 

  13. Zhang K, Dai J S, Fang Y, Zeng Q (2011) String matrix based geometrical and topological representation of mechanisms. 13th World Congress in Mechanism and Machine Science, Guanajuato, Mexico, A23_493

    Google Scholar 

  14. Gogu G (2007) Structural synthesis of fully-isotropic parallel robots with Schönflies motions via theory of linear transformations and evolutionary morphology. Eur J Mech A/Solids 26:242–269

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the support of European Commission—Framework 7 Programme under grant number 270436.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ketao Zhang .

Editor information

Editors and Affiliations

Appendix

Appendix

$$ {\mathbf{BA}}_{ 1} = \left[ {\begin{array}{*{20}c} {0000} & { 1 {\text{A4}}4} & {0000} & {0000} & {0000} & {0000} & {0000} & { 1 2 {\text{C4}}} \\ { 1 {\text{A4}}4} & {0000} & {1244} & {0000} & {0000} & {0000} & {0000} & {0000} \\ {0000} & {1244} & {0000} & {1{\text{AC}}4} & {0000} & {0000} & {0000} & {0000} \\ {0000} & {0000} & {1{\text{AC}}4} & {0000} & { 1 2 {\text{C4}}} & {0000} & {0000} & {0000} \\ {0000} & {0000} & {0000} & { 1 2 {\text{C4}}} & {0000} & { 1 {\text{A44}}} & {0000} & {0000} \\ {0000} & {0000} & {0000} & {0000} & { 1 {\text{A44}}} & {0000} & {1244} & {0000} \\ {0000} & {0000} & {0000} & {0000} & {0000} & {1244} & {0000} & {1{\text{AC}}4} \\ { 1 2 {\text{C4}}} & {0000} & {0000} & {0000} & {0000} & {0000} & {1{\text{AC}}4} & {0000} \\ \end{array} } \right] $$
(A.1)
$$ {\mathbf{BA}}_{ 2} = \left[ {\begin{array}{*{20}c} {0000} & { 1 4 44} & {0000} & {0000} & {0000} & {0000} & {0000} & { 1 2 {\text{C4}}} \\ { 1 4 44} & {0000} & {1414} & {0000} & {0000} & {0000} & {0000} & {0000} \\ {0000} & {1414} & {0000} & {1{\text{A4}}4} & {0000} & {0000} & {0000} & {0000} \\ {0000} & {0000} & {1{\text{A4}}4} & {0000} & { 1 4 4 4} & {0000} & {0000} & {0000} \\ {0000} & {0000} & {0000} & { 1 4 4 4} & {0000} & { 1 4 1 4} & {0000} & {0000} \\ {0000} & {0000} & {0000} & {0000} & { 1 4 1 4} & {0000} & {1244} & {0000} \\ {0000} & {0000} & {0000} & {0000} & {0000} & {1244} & {0000} & {1{\text{AC}}4} \\ { 1 2 {\text{C4}}} & {0000} & {0000} & {0000} & {0000} & {0000} & {1{\text{AC}}4} & {0000} \\ \end{array} } \right] $$
(A.2)
$$ {\mathbf{BA}}_{ 3} = \left[ {\begin{array}{*{20}c} {0000} & { 1 1 14} & {0000} & {0000} & {0000} & {0000} & {0000} & { 1 4 4 4} \\ { 1 1 14} & {0000} & {1414} & {0000} & {0000} & {0000} & {0000} & {0000} \\ {0000} & {1414} & {0000} & {1{\text{A4}}4} & {0000} & {0000} & {0000} & {0000} \\ {0000} & {0000} & {1{\text{A4}}4} & {0000} & { 1 1 4 4} & {0000} & {0000} & {0000} \\ {0000} & {0000} & {0000} & { 1 1 4 4} & {0000} & { 1 1 1 4} & {0000} & {0000} \\ {0000} & {0000} & {0000} & {0000} & { 1 1 1 4} & {0000} & {1414} & {0000} \\ {0000} & {0000} & {0000} & {0000} & {0000} & {1414} & {0000} & {1{\text{A4}}4} \\ { 1 4 4 4} & {0000} & {0000} & {0000} & {0000} & {0000} & {1{\text{A4}}4} & {0000} \\ \end{array} } \right] $$
(A.3)
$$ {\mathbf{BA}}_{{{\text{m}}1}} = \left[ {\begin{array}{*{20}c} {0000} & { 1 2 {\text{A}}4} & {0000} & {0000} & {0000} & {0000} & {0000} & { 1 2 {\text{C4}}} \\ { 1 2 {\text{A}}4} & {0000} & {1214} & {0000} & {0000} & {0000} & {0000} & {0000} \\ {0000} & {1214} & {0000} & {12{\text{A}}4} & {0000} & {0000} & {0000} & {0000} \\ {0000} & {0000} & {12{\text{A}}4} & {0000} & { 1 2 {\text{C4}}} & {0000} & {0000} & {0000} \\ {0000} & {0000} & {0000} & { 1 2 {\text{C4}}} & {0000} & { 1 2 {\text{A4}}} & {0000} & {0000} \\ {0000} & {0000} & {0000} & {0000} & { 1 2 {\text{A4}}} & {0000} & {1214} & {0000} \\ {0000} & {0000} & {0000} & {0000} & {0000} & {1214} & {0000} & {12{\text{A}}4} \\ { 1 2 {\text{C4}}} & {0000} & {0000} & {0000} & {0000} & {0000} & {12{\text{A}}4} & {0000} \\ \end{array} } \right] $$
(A.4)
$$ {\mathbf{BA}}_{\text{m2}} = \left[ {\begin{array}{*{20}c} {0000} & { 1 2 {\text{A}}4} & {0000} & {0000} & {0000} & {0000} & {12{\text{A}}4} & { - 1 2 {\text{C4}}} \\ { 1 2 {\text{A}}4} & {0000} & {1214} & {0000} & {0000} & {0000} & {0000} & {0000} \\ {0000} & {1214} & {0000} & {12{\text{A}}4} & {0000} & {0000} & {0000} & {0000} \\ {0000} & {0000} & {12{\text{A}}4} & {0000} & { 1 2 {\text{A4}}} & {0000} & {0000} & {0000} \\ {0000} & {0000} & {0000} & { 1 2 {\text{A4}}} & {0000} & { - 1 2 {\text{A4}}} & {1214} & {0000} \\ {0000} & {0000} & {0000} & {0000} & { - 1 2 {\text{A4}}} & {0000} & { - 1214} & {0000} \\ {12{\text{A}}4} & {0000} & {0000} & {0000} & {1214} & { - 1214} & {0000} & { - 12{\text{A}}4} \\ { - 1 2 {\text{C4}}} & {0000} & {0000} & {0000} & {0000} & {0000} & { - 12{\text{A}}4} & {0000} \\ \end{array} } \right] $$
(A.5)

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this paper

Cite this paper

Zhang, K., Fang, Y., Wei, G., Dai, J.S. (2012). Structural Representation of Reconfigurable Linkages. In: Dai, J., Zoppi, M., Kong, X. (eds) Advances in Reconfigurable Mechanisms and Robots I. Springer, London. https://doi.org/10.1007/978-1-4471-4141-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4141-9_13

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4140-2

  • Online ISBN: 978-1-4471-4141-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics