Clays and Clay Minerals as Layered Nanofillers for (Bio)Polymers

  • Faïza Bergaya
  • Maguy Jaber
  • Jean-François Lambert
Part of the Green Energy and Technology book series (GREEN)


This introductory chapter presents the most relevant structural, physical, and chemical properties of clay minerals for the formation of nanocomposites with polymers. The general principles of silicates classification are outlined in order to better understand the structures of the various types of clay minerals as phyllosilicates. Cation exchange capacity (CEC), surface area, porosity, and rheological properties of clay minerals are briefly discussed. The physico-chemical properties of clay mineral layers, including the reactivity at the edges surfaces, are introduced together with their consequences for the various mechanisms of clay-polymer interactions. The chapter closes on a brief presentation of synthetic clay minerals and a general introduction to clay polymer nanocomposites.


Clay Mineral Cation Exchange Capacity Interlayer Space Octahedral Sheet Tetrahedral Sheet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Marshall CE (1949) The colloid chemistry of silicates minerals. Cornell University Press, IthacaGoogle Scholar
  2. 2.
    Eitel W (1954) The physical chemistry of silicates. University of Chicago Press, ChicagoGoogle Scholar
  3. 3.
    Eitel W (1964–1976) Silicate science, vol I-VIII. Academic Press, New YorkGoogle Scholar
  4. 4.
    Iler RK (1955) The colloid chemistry of silica and silicates. Cornell University Press, New YorkGoogle Scholar
  5. 5.
    Iler RK (1979) The chemistry of silica. Solubility, polymerization, colloid and surface properties and biochemistry. Wiley, New YorkGoogle Scholar
  6. 6.
    Hauser EA (1955) Silicic science. D Van Nostrand Co, Inc., New YorkGoogle Scholar
  7. 7.
    Liebau F (1985) Structural chemistry of silicates. Structure, bonding, and classification. Springer, HeidelbergGoogle Scholar
  8. 8.
    Rives V (ed) (2001) Layered double hydroxides: present and future. Nova Science Publishers, New YorkGoogle Scholar
  9. 9.
    Duan X, Evans DG (eds) (2006) Layered double hydroxides. Springer, HeidelbergGoogle Scholar
  10. 10.
    Forano C, Hibino T, Leroux F, Taviot-Guého C (2006) Layered double hydroxides. In: Bergaya F, Theng BKG, Lagaly G (eds). Handbook of Clay Science. Developments of Clay Science, vol 1. Elsevier, Amsterdam, pp 1021–1096Google Scholar
  11. 11.
    Choy J-H, Choi S-J, Oh J-M, Park T (2007) Clay minerals and layered double hydroxides for novel biological applications. Appl Clay Sci 26:122–132CrossRefGoogle Scholar
  12. 12.
    Veniale F (1992) Clay science, facts and perspectives, opening lecture. In: Paper presented at the proceedings of the Mediterranean clay meeting 1992, LipariGoogle Scholar
  13. 13.
    Konta J (2000) Clay science at the threshold of the new millennium: a look at the history and present trends. Acta Universitatis Carolinae-Geologica 44:11Google Scholar
  14. 14.
    Bergaya F, Lagaly G, Beneke K (2006) History of clay science: a young discipline. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science. Developments of clay science, vol 1. Elsevier, Amsterdam, pp 1163–1181Google Scholar
  15. 15.
    Bergaya F, Lagaly G (2006) General introduction: clays, clay minerals and clay science. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science. Developments of clay science, vol 1. Elsevier, Amsterdam, pp 1–18Google Scholar
  16. 16.
    Moore DM, Reynolds RC Jr (1997) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, OxfordGoogle Scholar
  17. 17.
    Stokes G (1851) On the effect of the internal friction of fluids on the motion of pendulums. Trans Camb Phil Soc 9:8–106Google Scholar
  18. 18.
    Carrado KA, Decarreau A, Petit S, Bergaya F, Lagaly G (2006) Synthetic clay minerals and purification of natural clays. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science. Developments of clay science, vol 1. Elsevier, Amsterdam, pp 1–18Google Scholar
  19. 19.
    Lagaly G, Beneke K, Weiss A (1975) Magadiite and H-magadiite. I. Sodium magadiite and some of its derivatives. Am Miner 60(7-8):642–649Google Scholar
  20. 20.
    Lagaly G, Beneke K, Weiss A (1975) Magadiite and H-magadiite. II. H-magadiite and its intercalation compounds. Am Miner 60(7–8):650–658Google Scholar
  21. 21.
    Almond GG, Harris RK, Franklin KR (1996) A 23Na NMR study of hydrous layered silicates. J Mater Chem 6(5):843–847CrossRefGoogle Scholar
  22. 22.
    Almond GG, Harris RK, Franklin KR (1997) A structural consideration of kanemite, octosilicate, magadiite and kenyaite. J Mater Chem 7(4):681–687CrossRefGoogle Scholar
  23. 23.
    Apperley DC, Hudson MJ, Keene MTJ, Knowles JA (1995) Kanemite (NaHSi2O5.3H2O) and its hydrogen-exchanged form. J Mater Chem 5(4):577–582CrossRefGoogle Scholar
  24. 24.
    Brigatti F, Galan E, Theng BKG (2006) Structures and mineralogy of clay minerals. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science. Developments of clay science, vol 1. Elsevier, Amsterdam, pp 19–86Google Scholar
  25. 25.
    Löwenstein W (1954) The distribution of aluminium in the terahedra of silicates and aluminates. Am Miner 39:92–96Google Scholar
  26. 26.
    Gonzalez-Gallardo S, Jancik V, Delgado-Robles AA, Moya-Cabrera M (2011) Cyclic alumosiloxanes and alumosilicates: exemplifying the loewenstein rule at the molecular level. Inorg Chem 50(10):4226–4228CrossRefGoogle Scholar
  27. 27.
    Tan S, Tincer T (2011) Preparation and characterization of polypropylene/serpentine. J Appl Polym Sci 121:846–854CrossRefGoogle Scholar
  28. 28.
    Battegazzore D, Bocchini S, Frache A (2011) Crystallization kinetics of poly(lactic acid)-talc composites. Express Polym Lett 5(10):849–858CrossRefGoogle Scholar
  29. 29.
    Fowlks AC, Narayan R (2010) The effect of maleated polylactic acid (PLA) as an interfacial modifier in PLA-Talc composites. J Appl Polym Sci 118(5):2810–2820CrossRefGoogle Scholar
  30. 30.
    Cuba-Chiem LT, Huynh L, Ralston J, Beattie DA (2008) In situ particle film ATR FTIR spectroscopy of carboxymethyl cellulose adsorption on talc: binding mechanism, pH effects, and adsorption kinetics. Langmuir 24(15):8036–8044CrossRefGoogle Scholar
  31. 31.
    Brindley GW, Brown G (1980) Crystal structure of clay minerals and their X ray identification. Mineralogical Society, LondonGoogle Scholar
  32. 32.
    Rieder M, Cavazzini G, D’Yakonov YS, Frank-Kamenetskii VA, Gottardi G, Guggenheim S, Koval PV, Muller G, Neiva AMR, Radoslovich EW, Robert J-L, Sassi FP, Takeda H, Weiss Z, Wones DR (1998) Nomenclature of the micas. Clays Clay Miner 46(5):486–495CrossRefGoogle Scholar
  33. 33.
    Meunier A, Velde B (2004) Illite. Origins, evolution and metamorphism. Springer, BerlinGoogle Scholar
  34. 34.
    Brigatti MF, Guggenheim S (2002) Mica crystal chemistry and the influence of pressure, temperature, and solid solution on atomistic models. In: Mottana A, Sassi FP, Thompson JB, Guggenheim S (eds) Micas: crystal chemistry and metamorphic petrology. Mineralogical Society of America, Washington, pp 1–97Google Scholar
  35. 35.
    Bergaya F, Jaber M, Lambert JF (2011) Clays and clay minerals—Chapter 1. In: Galimberti M (ed) Rubber clay nanocomposites. Science, technology and application. Wiley, ChichesterGoogle Scholar
  36. 36.
    Altaner S, Ylagan RF (1997) Comparison of structural models of mixed-layer illite/smectite and reaction mechanisms of smectite illitization. Clays Clay Miner 45(4):517–533CrossRefGoogle Scholar
  37. 37.
    Bailey SW (1982) Nomenclature for regular interstratifications. Am Miner 67:394–398Google Scholar
  38. 38.
    Lagaly G (2006) Colloid clay science. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of Clay Science. Developments of Clay Science, vol 1. Elsevier, Amsterdam, pp 141–246Google Scholar
  39. 39.
    Michot LJ, Bihannic I, Pelletier M, Rinnert E, Robert JL (2005) Hydration and swelling of synthetic Na-saponites: influence of layer charge. Am Mineral 90(1):166–172CrossRefGoogle Scholar
  40. 40.
    Ferrage E, Lanson B, Sakharov BA, Drits VA (2005) Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I. Montmorillonite hydration properties. Am Miner 90(8–9):1356–1374Google Scholar
  41. 41.
    Ferrage E, Tournassat C, Rinnert E, Lanson B (2005) Influence of pH on the interlayer cationic composition and hydration state of Ca-montmorillonite: analytical chemistry, chemical modelling and XRD profile modelling study. Geochem Cosmochem Acta 69(11):2797–2812CrossRefGoogle Scholar
  42. 42.
    Garcia-Romero E, Suarez M (2010) On the chemical composition of sepiolite and palygorskite. Clays Clay Miner 58(1):1–20CrossRefGoogle Scholar
  43. 43.
    de Lapparent J (1935) Sur un constituent essentiel des terres à foulon. Acad Sci 201:481–483Google Scholar
  44. 44.
    Yang H, Peng Z, Zhou Y, Zhao F, Zhang J, Cao X, Hu Z (2011) Preparation and performances of a novel intelligent humidity control composite material. Energy Build 43(2–3):386–392CrossRefGoogle Scholar
  45. 45.
    Cradwick PD, Wada K, Russell JD, Yoshinaga N, Masson CR, Farmer VC (1972) Imogolite, a hydrated aluminum silicate of tubular structure. Nature Phys Sci 240:187–199CrossRefGoogle Scholar
  46. 46.
    Levard C, Rose J, Masion A, Doelsch E, Borschneck D, Olivi L, Dominici C, Grauby O, Woicik JC, Bottero JY (2008) Synthesis of large quantities of single-walled aluminogermanate nanotube. J Am Chem Soc 130(18):5862CrossRefGoogle Scholar
  47. 47.
    Maillet P, Levard C, Larquet E, Mariet C, Spalla O, Menguy N, Masion A, Doelsch E, Rose J, Thill A (2010) Evidence of double-walled Al-Ge imogolite-like nanotubes. A cryo-TEM and SAXS investigation. J Am Chem Soc 132(4):1208–1218CrossRefGoogle Scholar
  48. 48.
    Bergaya F, Lagaly G (2011) Intercalation processes of layered minerals—Chapter 7. In: Brigatti MF, Mottana A (eds). Layered mineral structure and their application in advanced technologies, vol 11. European Mineralogical Union Notes in MineralogyGoogle Scholar
  49. 49.
    Aparicio P, Perez-Bernal JL, Galan E, Bello MA (2004) Kaolin fractal dimension. Comparison with other properties. Clay Miner 39(1):75–84CrossRefGoogle Scholar
  50. 50.
    Annabi-Bergaya F, Cruz MI, Gatineau L, Fripiat JJ (1979) Adsorption of alcohols by smectites I. Distinction between internal and external surfaces. Clay Miner 14:249–258CrossRefGoogle Scholar
  51. 51.
    Eltantawy IM, Arnold PW (1974) Ethylene glycol sorption by homoionic montmorillonites. J Soil Sci 25:99–110CrossRefGoogle Scholar
  52. 52.
    Chiou CT, Rutherford DW (1997) Effects of exchanged cation and layer charge on the sorption of water and EGME vapors on montmorillonite clays. Clays Clay Miner 45:867–880CrossRefGoogle Scholar
  53. 53.
    Tiller KG, Smith LH (1990) Limitations of EGME retention to estimate the surface area of soils. Aust J Soil Res 28:1–26CrossRefGoogle Scholar
  54. 54.
    Yukselen Y, Kaya A (2008) Suitability of methylene blue test for surface area, cation exchange capacity and swell potential determination of clayey soils. Eng Geol 102:38–45CrossRefGoogle Scholar
  55. 55.
    Bergaya F (1995) The meaning of surface area measurements of clays and pillared clays. J. Por. Mat. 2:91–96CrossRefGoogle Scholar
  56. 56.
    Rouquerol J, Rodriguez-Reinoso F, Sing KSW, Unger KK (1994) Characterization of porous solids III. Proceedings of the IUPAC Symposium Elsevier Science, AmsterdamGoogle Scholar
  57. 57.
    Michot LJ, Villieras F (2006) Surface area and porosity. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of Clay Science. Developments of Clay Science, vol 1. Elsevier, Amsterdam, pp 965–978Google Scholar
  58. 58.
    Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids. Principles, methodology and applications. Academic Press, San DiegoGoogle Scholar
  59. 59.
    Julve D, Ramos J, Perez J, Menendez M (2011) Analysis of mercury porosimetry curves of precipitated silica, as an example of compressible porous solids. J Non-Cryst Sol 357(4):1319–1327CrossRefGoogle Scholar
  60. 60.
    Bergaya F, Lagaly G, Vayer M (2006) Cation and anion exchange. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of Clay Science. Developments of Clay Science, vol 1. Elsevier, Amsterdam, pp 979–1001Google Scholar
  61. 61.
    Chourabi B, Fripiat JJ (1981) Determination of tetrahedral substitutions and interlayer surface heterogeneity from vibrational spectra of ammonium in smectites. Clays Clay Miner 29:260–268CrossRefGoogle Scholar
  62. 62.
    Bergaya F, Vayer M (1997) CEC of clays: measurement by adsorption of a copper ethylenediamine complex. Appl Clay Sci 12(3):275–280CrossRefGoogle Scholar
  63. 63.
    Ammann L, Bergaya F, Lagaly G (2005) Determination of the cation exchange capacity of clays with copper complexes revisited. Clay Min. 40(4):441–453CrossRefGoogle Scholar
  64. 64.
    Lagaly G (1994) Layer charge determination by alkyl ammonium. In: Mermut AR (ed) Layer charge charactersitics of 2:1 silicate clay minerals. The Clay Minerals Society, Boulder, pp 2–46Google Scholar
  65. 65.
    Hofmann U, Klemen R (1950) Verlust der Austauschfähigkeit von Lithiumionen an Bentonit durch Erhitzung. Z Anorg Allg Chem 262:95–99Google Scholar
  66. 66.
    Christidis GE, Blum AE, Eberl DD (2006) Influence of layer charge and charge distribution of smectites on the flow behaviour and swelling of bentonites. Appl Clay Sci 34:125–138CrossRefGoogle Scholar
  67. 67.
    Norrish K (1954) The swelling of montmorillonite. Disc. Faraday Soc. 18:120–134CrossRefGoogle Scholar
  68. 68.
    Benna M, Kbir-Ariguib N, Clinard C, Bergaya F (2001) Static filtration of purified sodium bentonite clay suspensions. Effect of clay content. Appl Clay Sci 19:103–120CrossRefGoogle Scholar
  69. 69.
    Michot LJ, Baravian C, Bihannic I, Maddi S, Moyne C, Duval JFL, Levitz P, Davidson P (2009) Sol-gel and isotropic/nematic transitions in aqueous suspensions of natural nontronite clay. Influence of particle anisotropy. 2. Gel structure and mechanical properties. Langmuir 25(1):127–139CrossRefGoogle Scholar
  70. 70.
    Michot LJ, Bihannic I, Maddi S, Baravian C, Levitz P, Davidson P (2009) Sol-gel and isotropic/nematic transitions in aqueous suspensions of natural nontronite clay. Influence of particle anisotropy. 1. Features of the I/N Transition. Langmuir 24:3127–3139CrossRefGoogle Scholar
  71. 71.
    Lagaly G, Ogawa M, Dekany I (2006) Clay mineral organic interaction. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of Clay Science. Developments of Clay Science, vol 1. Elsevier, Amsterdam, pp 309–377Google Scholar
  72. 72.
    de Paiva LB, Morales AR, Valenzuela Diaz FR (2008) Organoclays: properties, preparation and applications. Appl Clay Sci 42(1–2):8–24CrossRefGoogle Scholar
  73. 73.
    Bergaya F, Jaber M, Lambert JF (2011) Organophilic clay minerals—Chapter 2. In: Galimberti M (ed) Rubber clay nanocomposites. Science, technology and application. Wiley, ChichesterGoogle Scholar
  74. 74.
    Lagaly G (1976) Kink-block and gauche-block structures of bimolecular films. Angewandte Chemie-International Edition in English 15(10):575–586CrossRefGoogle Scholar
  75. 75.
    Lagaly G, Beneke K (1991) Intercalation and exchange reactions of clay minerals and non-clay layer compounds. Colloid Polym Sci 269:1198–1211CrossRefGoogle Scholar
  76. 76.
    Wang L-Q, Liu J, Exarhos GJ, Flanigan KY, Bordia R (2000) Conformation heterogeneity and mobility of surfactant molecules in intercalated clay minerals studied by solid-state NMR. J Phys Chem B 104(13):2810–2816CrossRefGoogle Scholar
  77. 77.
    Vaia RA, Teukolsky RK, Giannelis EP (1994) Interlayer structure and molecular environment of alkylammonium layered silicates. Chem Mater 6:1017–1022CrossRefGoogle Scholar
  78. 78.
    Bergaya F, Aouad A, Mandalia T (2006) Pillared clays and clay minerals. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of Clay Science. Developments of Clay Science, vol 1. Elsevier, Amsterdam, pp 393–421Google Scholar
  79. 79.
    Plee D, Borg F, Gatineau L, Fripiat JJ (1985) High-resolution solid-state aluminum-27 and silicon-29 nuclear magnetic resonance study of pillared clays. J Am Chem Soc 107:2362–2369CrossRefGoogle Scholar
  80. 80.
    Gil A, Gandía LM, Vicente MA (2000) Recent advances in the synthesis and catalytic applications of pillared clays. Catal Rev—Sci Eng 42:145–212CrossRefGoogle Scholar
  81. 81.
    Gil A, Korili SA, Vicente MA (2008) Recent advances in the control and characterization of the porous structure of pillared clay catalysts. Catal Rev Sci Eng 50(2):153–221CrossRefGoogle Scholar
  82. 82.
    Lambert JF, Poncelet G (1997) Acidity in pillared clays: origin and catalytic manifestations. Top Catal 4:43–56CrossRefGoogle Scholar
  83. 83.
    Hougardy J, Stone WEE, Fripiat JJ (1976) NMR-study of adsorbed water.1. Molecular orientation and protonic motions in 2-layer hydrate of a Na vermiculite. J Chem Phys 64(9):3840–3852CrossRefGoogle Scholar
  84. 84.
    Laperche V, Lambert JF, Prost R, Fripiat JJ (1989) High-resolution solid-state NMR of exchangeable cations in the interlayer surface of a swelling mica- Na-23, Cd-111, and Cs-133 vermiculites. J Phys Chem 94(25):8821–8831CrossRefGoogle Scholar
  85. 85.
    Annabi-Bergaya F, Cruz MI, Gatineau L, Fripiat JJ (1979) Adsorption of alcohols by smectites III. Nature of the bonds. Clay Miner 14:225–237CrossRefGoogle Scholar
  86. 86.
    Tunney JJ, Detellier C (1993) Interlamellar covalent grafting of organic units on kaolinite. Chem Mater 5(6):747–748CrossRefGoogle Scholar
  87. 87.
    Bleam WE (1993) Atomic theory of phyllosilicates: quantum chemistry, statistical, mechanics, electrostatic theory, and crystal chemistry. Rev Geophys 31:51–73CrossRefGoogle Scholar
  88. 88.
    Tournassat C, Neaman A, Villieras F, Bosbach D, Charlet L (2003) Nanomorphology of montmorillonite particles: estimation of the clay edge sorption site density at low pressure gas adsorption and AFM observations. Am Miner 88:1989–1995Google Scholar
  89. 89.
    Tombácz E, Szekeres M (2004) Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite. Appl Clay Sci 34:105–124CrossRefGoogle Scholar
  90. 90.
    Michot LJ, Villieras F (2002) Assessment of surface energetic heterogeneity of synthetic Na-saponites. The role of layer charge. Clay Min 37(1):39–57CrossRefGoogle Scholar
  91. 91.
    Beall GW, Goss M (2005) Self-assembly of organic molecules on montmorillonite. Appl Clay Sci 27:179–186CrossRefGoogle Scholar
  92. 92.
    Paul DR, Zeng QH, Yu AB, Lu GQ (2005) The interlayer swelling and molecular packing in organoclays. J Colloid Interface Sci 292:462–468CrossRefGoogle Scholar
  93. 93.
    Aranda P, Ruiz-Hitzky E (1992) Poly(ethylene oxide) intercalation materials. Chem Mater 4(6):1395–1403CrossRefGoogle Scholar
  94. 94.
    Krishnamachari P, Zhang J, Lou J, Yan J, Uitenham L (2009) Biodegradable poly(lactic acid)/clay nanocomposites by melt intercalation: a study of morphological, thermal, and mechanical properties. Int J Polym Anal Charact 4:336–350CrossRefGoogle Scholar
  95. 95.
    Sengwa RJ, Sankhla S, Choudhary S (2009) Dielectric characterization of solution intercalation and melt intercalation poly(vinyl alcohol)-poly(vinyl pyrrolidone) blend-montmorillonite clay nanocomposite films. Indian J Pure Appl Phys 48(3):196–204Google Scholar
  96. 96.
    Fernandes FM, Ruiz AI, Darder M, Aranda P, Ruiz-Hitzky E (2009) Gelatin-clay bio-nanocomposites: structural and functional properties as advanced materials. J Nanosci Nanotechnol 9(1):221–229CrossRefGoogle Scholar
  97. 97.
    Vaia RA, Ishii H, Giannelis EP (1993) Synthesis and properties of 2-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chem Mater 6:1694–1696CrossRefGoogle Scholar
  98. 98.
    Ruiz-Hitzky E, Darder M, Aranda P (2005) Functional biopolymer nanocomposites based on layered solids. J Mater Chem 15:3650–3662CrossRefGoogle Scholar
  99. 99.
    Da Silva C, Haidar B, Vidal A, Miehé-Brendlé J, Le Dred R, Vidal L (2005) Preparation of EPDM/synthetic montmorillonite nanocomposites by direct compounding. J Mater Sci 40:1813–1815CrossRefGoogle Scholar
  100. 100.
    Utracki LA, Sepehr M, Boccaleri E (2007) Synthetic, layered nanoparticles for polymeric nanocomposites WNCO. Polym Adv Technol 18(1):1–37CrossRefGoogle Scholar
  101. 101.
    Sharma S, Komarneni S (2009) Synthesis and characterization of synthetic mica-bionanocomposites. Appl Clay Sci 42(3–4):553–558CrossRefGoogle Scholar
  102. 102.
    Kloprogge JT, Komarneni S, Amonette JE (1999) Synthesis of smectites clay minerals: a critical review. Clays Clay Miner 57(5):529–554CrossRefGoogle Scholar
  103. 103.
    Zhang D, Zhou C-H, Lin C-X, Tong D-S, Yu W-H (2010) Synthesis of clay minerals. Appl Clay Sci 50(1):1–11CrossRefGoogle Scholar
  104. 104.
    Theng BKG (1979) Formation and properties of clay-polymer complexes. Elsevier, New YorkGoogle Scholar
  105. 105.
    Singer A, Huang PM (1989) Adsorption of humic acid by palygorskite and sepiolite. Clay Miner 24(3):561–564CrossRefGoogle Scholar
  106. 106.
    Murray HH, Kogel JE (2005) Engineered clay products for the paper industry. Appl Clay Sci 29(3–4):199–206CrossRefGoogle Scholar
  107. 107.
    Robertson RHS (1957) Sepiolite—a versatile raw material. Chem Ind 46:1492–1495Google Scholar
  108. 108.
    Yao-Zong Y, Shi-Rong L, Delvaux M (2004) Comparative efficacy of dioctahedral smectite (Smecta (R)) and a probiotic preparation in chronic functional diarrhoea. Digest Liver Dis 36(12):824–828CrossRefGoogle Scholar
  109. 109.
    Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) Synthesis of nylon 6-clay hybrid. J Mater Res 8(5):1179–1184CrossRefGoogle Scholar
  110. 110.
    Pinnavaia TJ, Beall GW (eds) (2001) Polymer-clay nanocomposites. Wiley, ChichesterGoogle Scholar
  111. 111.
    Biswas M, Sinha Ray S (2001) Recent progress in synthesis and evaluation of polymer-montmorillonite nanocomposites. Adv Polym Sci 135:167–221CrossRefGoogle Scholar
  112. 112.
    Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641CrossRefGoogle Scholar
  113. 113.
    Sanchez C, Julian B, Belleville P, Popall M (2005) Applications of hybrid organic–inorganic nanocomposites. J Mater Chem 15:3559–3592CrossRefGoogle Scholar
  114. 114.
    Chen B, Evans JRG, Greenwell HC, Boulet P, Coveney PV, Bowden AA, Whiting A (2007) A critical appraisal of polymer-clay nanocomposites. Chem Soc Rev 37:568–594CrossRefGoogle Scholar
  115. 115.
    Carrado KA, Bergaya F (eds) (2007) Clay-based polymer nanocomposites (CPN). CMS workshop lectures series, vol 14. The Clay Minerals Society, BoulderGoogle Scholar
  116. 116.
    Ruiz-Hitzky E, Darder M, Aranda P, Ariga K (2010) Advances in biomimetic and nanostructured biohybrid materials. Adv Mater 22(3):323–336CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  • Faïza Bergaya
    • 1
  • Maguy Jaber
    • 2
  • Jean-François Lambert
    • 2
  1. 1.Centre de Recherche sur la Matière Divisée (CRMD) UMR 6619 CNRSUniversité d’OrléansOrléans Cedex 02France
  2. 2.Laboratoire de Réactivité de Surface (LRS) UMR 7197 CNRSUniversity Paris 6Paris Cedex 05France

Personalised recommendations