Skip to main content

Algebraic Number Fields

  • Chapter
  • 2474 Accesses

Part of the book series: Universitext ((UTX))

Abstract

This chapter is an introduction to algebraic number fields, which arose from both a generalization of the arithmetic in ℤ and the necessity to solve certain Diophantine equations. After recalling basic concepts from algebra and providing some polynomial irreducibility tools, the ring of integers \(\mathcal {O}_{\mathbb {K}}\) of an algebraic number field \(\mathbb {K}\) is investigated. Next, the ideal numbers, as Kummer called them, are introduced to restore unique factorization. The last section shows how analytic tools can be used to solve hard problems of algebraic number theory. In particular, an account of Zimmert’s method for ideal classes is given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The FLT states that the Fermat equation has no solution in positive integers x, y, z as soon as n⩾3. This was finally proved by Wiles in 1995.

  2. 2.

    For an interesting account of the history of the birth of the ideal theory in the late 19th century, the reader is referred to [Mol99, ST02].

  3. 3.

    See Sect. 2.6 in Chap. 2.

  4. 4.

    It should be mentioned that in this chapter we only consider unitary commutative rings unless explicitly stated to the contrary.

  5. 5.

    By Proposition 7.16 (v), all bases of a finitely generated abelian group have the same number of elements.

  6. 6.

    More generally, suppose we have a homomorphism \(\varphi: \mathbb {K}\longrightarrow \mathbb {L}\). Since these sets are fields, φ is injective and one may identify \(\mathbb {K}\) with its image \(\varphi(\mathbb {K})\), which is a subfield of \(\mathbb {L}\).

  7. 7.

    We sometimes make use of the equality P=P(X) where the right-hand side is the composition of the polynomial P with the polynomial X.

  8. 8.

    More generally, one can prove that if \(\mathbb {K}\) is a field such that \(\operatorname{char} \mathbb {K}= 0\), then \(P \in \mathbb {K}[X]\) can be written in the form P=Q 2 R if and only if P and P′ have a common factor of degree >0.

  9. 9.

    The curve y 2=P(x) is an example of hyperelliptic curve of genus 2 whose jacobian was first treated with a 2-descent method in [FPS97]. Using a refinement of a profound result due to Chabauty and Coleman, it may be shown that this curve has only six rational points, i.e. the two points at infinity and the points (0,±1) and (−3,±1).

  10. 10.

    This definition comes from the theory of resultants. The word “discriminant” indicates that \(\operatorname{disc}(P)\) does not vanish if all the roots α i are distinct so that \(\operatorname{disc}(P)\) discriminates the roots of P.

  11. 11.

    In a PID, every non-zero prime ideal is maximal. See [GG04, Théorème X.3.1] for instance.

  12. 12.

    Hermite, 1873. In 1882, using essentially the same ideas, Lindemann proved that π is also transcendental over ℚ and hence showed that squaring the circle is impossible.

  13. 13.

    This result is sometimes called the theorem of the primitive element.

  14. 14.

    See also [EM99] for another proof using the properties of sub-ℤ-modules of finitely generated ℤ-modules.

  15. 15.

    See Sect. 7.5 and the Kronecker–Weber theorem.

  16. 16.

    A subset of \(\mathbb {R}^{r_{1}+r_{2}}\) is discrete if and only if it intersects every closed ball of center O in a finite set.

  17. 17.

    A domain R is integrally closed means that if α/β is a root of a monic polynomial lying in R[X] with \(\alpha, \beta\in R, \ \beta\not= 0\), then α/βR.

  18. 18.

    In fact, we should rather denote these sets respectively by \(\mathcal{I} (\mathcal {O}_{\mathbb {K}})\) and \(\mathcal{P} (\mathcal {O}_{\mathbb {K}})\), but we have followed here the usual practice. Nevertheless, if R is any number ring, i.e. a domain for which the quotient field \(\mathbb {K}\) is an algebraic number field, then the collection of all fractional ideals, resp. principal ideals, of R is denoted by \(\mathcal{I}(R)\), resp. \(\mathcal{P} (R)\). Similarly, the class group or Picard group of R, which is an invariant of R, is denoted by Cl(R) or Pic(R) and is defined as in Definition 7.110 by \(\textrm{Cl}(R) = \mathcal{I}(R) / \mathcal {P} (R)\). When R is the ring of integers of an algebraic number field \(\mathbb {K}\), then \(\textrm{Cl}(\mathcal {O}_{\mathbb {K}})\) depends only on \(\mathbb {K}\) and is usually denoted by \(\operatorname{Cl(\mathbb {K})}\). Hence the class group in the usual sense may be viewed as an invariant of \(\mathbb {K}\).

  19. 19.

    The zero ideal can also be written as a product of prime ideals, but the decomposition is not unique. Hence the case of the zero ideal is almost always excluded in this book.

  20. 20.

    See footnote 18 for the notation.

  21. 21.

    The factor \(A_{\mathbb {K}}^{s} \Gamma_{\mathbb {K}}(s)\) is sometimes called the Euler factor of \(\zeta_{\mathbb {K}}(s)\).

  22. 22.

    See [Lan94, Nar04, Neu10] for an exhaustive account of Hecke’s method and Tate’s work.

  23. 23.

    Some authors [Coh93, Neu10] consider the “weighted” function \(2^{r_{2}}\xi_{\mathbb {K}} (s)\) instead.

  24. 24.

    A proof is supplied in Exercise 11.

  25. 25.

    The Extended Riemann Hypothesis states that all non-trivial zeros of the Dedekind zeta-function lie on the line σ=1/2. It should be mentioned that ERH is sometimes called GRH, for Generalized Riemann Hypothesis. However, GRH is referred to in this book as the conjecture asserting that the Dirichlet L-functions have all their zeros lying on the line σ=1/2. See Footnote 26.

  26. 26.

    The Generalized Riemann Hypothesis, or GRH for short, asserts that the Dirichlet L-functions have all their zeros lying on the line σ=1/2.

  27. 27.

    Implying in particular, along with a result of Ribet, Fermat’s last theorem.

  28. 28.

    See Definition 3.39.

  29. 29.

    This error remained unnoticed for about 90 years.

  30. 30.

    This is in fact the Hilbert class field of \(\mathbb {K}\). See Theorem 7.168.

  31. 31.

    This is now referred to as Kronecker Jurgendtraum i.e. Kronecker’s dream of his youth. This was completely proved by Takagi in 1920.

  32. 32.

    Among the 23 problems introduced by Hilbert, some of them have been solved and others are still open. Note that Hilbert’s 8th problem is the Riemann hypothesis.

  33. 33.

    For a definition of totally positive numbers in algebraic number fields, see [Nar04, page 44].

  34. 34.

    The different of \(\mathcal {O}_{\mathbb {K}}\) is the integral ideal \(\mathcal{D}_{\mathbb {K}/\mathbb {Q}}\) defined as the inverse of the fractional ideal

    $$\bigl\lbrace y \in \mathbb {K}: \textrm{Tr}_{\mathbb {K}/\mathbb {Q}}(xy) \in \mathbb {Z}\ \text{for all\ } x \in \mathcal {O}_\mathbb {K}\bigr\rbrace $$

    called the codifferent. It can be proved that the ramified prime ideals of \(\mathcal {O}_{\mathbb {K}}\) are the prime ideals dividing \(\mathcal{D}_{\mathbb {K}/\mathbb {Q}}\) and \(\mathcal {N}_{\mathbb {K}/\mathbb {Q}}( \mathcal{D}_{\mathbb {K}/\mathbb {Q}} ) = \vert d_{\mathbb {K}} \vert \). In fact, much more is true. Indeed, let p be a prime number and \(\mathfrak{p}\) be a prime ideal above p. If e is the ramification index \(e(\mathfrak{p} \mid p)\), then \(\mathfrak{p}^{e-1} \mid\mathcal {D}_{\mathbb {K}/\mathbb {Q}}\).

  35. 35.

    Such fields are usually called CM-fields.

  36. 36.

    PARI/GP provides \(\mathcal{R}_{\mathbb {K}}w_{\mathbb {K}}^{-1} \approx172 \, 495\).

References

  1. Alzer H (2000) Inequalities for the Gamma function. Proc Am Math Soc 128:141–147

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson N, Saff EB, Varga RS (1979) On the Eneström–Kakeya theorem and its sharpness. Linear Algebra Appl 28:5–16

    Article  MathSciNet  MATH  Google Scholar 

  3. Alaca S, Williams KS (2004) Introductory algebraic number theory. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  4. Alaca S, Williams KS (2004) On Voronoï’s method for finding an integral basis of a cubic field. Util Math 65:163–166

    MathSciNet  MATH  Google Scholar 

  5. Baker A (1966) Linear forms in the logarithms of algebraic numbers. Mathematika 13:204–216

    Article  Google Scholar 

  6. Bartz KM (1978) On a theorem of Sokolovskii. Acta Arith 34:113–126

    MathSciNet  MATH  Google Scholar 

  7. Bordellès O (2002) Explicit upper bounds for the average order of d n (m) and application to class number. JIPAM J Inequal Pure Appl Math 3, Art. 38

    MathSciNet  Google Scholar 

  8. Bourbaki N (1970) Algèbre I, chapitres 1 à 3. Hermann, Paris

    Google Scholar 

  9. Chadrasekharan K, Narasimhan R (1963) The approximate functional equation for a class of zeta-functions. Math Ann 152:30–64

    Article  MathSciNet  Google Scholar 

  10. Cohen H (1993) A course in computational algebraic number theory. GTM, vol 138. Springer, Berlin

    MATH  Google Scholar 

  11. Cohen H (2000) Advanced topics in computational algebraic number theory. GTM, vol 193. Springer, Berlin

    Book  Google Scholar 

  12. Cohen H (2007) Number theory Volume I: Tools and Diophantine equations. GTM, vol 239. Springer, Berlin

    Google Scholar 

  13. Cox DA (1989) Primes of the form x 2+ny 2. Wiley, New York

    Google Scholar 

  14. Cohen H, Roblot X-R (2000) Computing the Hilbert class field of real quadratic fields. Math Comput 69:1229–1244

    MathSciNet  MATH  Google Scholar 

  15. Cusick TW (1984) Lower bounds for regulators. In: Number theory. Lect. notes math., vol 1068, pp 63–73. Proc J Arith, Noordwijkerhout/Neth 1983

    Google Scholar 

  16. de la Maza A-C (2001) Bounds for the smallest norm in an ideal class. Math Comput 71:1745–1758

    Article  Google Scholar 

  17. Elezović N, Giordano C, Pečarić J (2000) The best bounds in Gautschi’s inequality. Math Inequal Appl 3:239–252

    MathSciNet  MATH  Google Scholar 

  18. Esmonde J, Murty MR (1999) Problems in algebraic number theory. GTM, vol 190. Springer, Berlin

    Book  MATH  Google Scholar 

  19. Erdős P (1934) A theorem of Sylvester and Schur. J Lond Math Soc 9:282–288

    Article  Google Scholar 

  20. Erdős P (1953) Arithmetic properties of polynomials. J Lond Math Soc 28:416–425

    Article  Google Scholar 

  21. Eloff D, Spearman BK, Williams KS (2007) A 4-sextic fields with a power basis. Missouri J Math Sci 19:188–194

    MATH  Google Scholar 

  22. Flynn EV, Poonen B, Schaefer EF (1997) Cycles of quadratic polynomials and rational points on a genus-2 curve. Duke Math J 90:435–463

    Article  MathSciNet  MATH  Google Scholar 

  23. Friedman E (1989) Analytic formulas for the regulator of a number field. Invent Math 98:599–622

    Article  MathSciNet  MATH  Google Scholar 

  24. Friedman E (2007) Regulators and total positivity. Publ Mat 51:119–130

    MATH  Google Scholar 

  25. Fröhlich A, Taylor MJ (1991) Algebraic number theory. Cambridge studies in advanced mathematics, vol 27. Cambridge University Press, Cambridge

    Google Scholar 

  26. Garbanati D (1981) Class field theory summarized. Rocky Mt J Math 11:195–225

    Article  MathSciNet  MATH  Google Scholar 

  27. Gauss CF (1986) Disquisitiones Arithmeticæ. Springer-Verlag, Berlin. Reprint of the Yale University Press, New Haven, 1966

    MATH  Google Scholar 

  28. Gras G, Gras M-N (2004) Algèbre Fondamentale, Arithmétique. Ellipses, Paris

    Google Scholar 

  29. Goldfeld D (1985) Gauss’ class number problem for imaginary quadratic fields. Bull Am Math Soc 13:23–37

    Article  MathSciNet  MATH  Google Scholar 

  30. Gras M-N (1974) Nombre de classes, unités et bases d’entiers des extensions cubiques cycliques de ℚ. Mem SMF 37:101–106

    MathSciNet  MATH  Google Scholar 

  31. Greenberg M (1974) An elementary proof of the Kronecker–Weber theorem. Am Math Mon 81:601–607. Correction (1975), 81:803

    Article  MATH  Google Scholar 

  32. Gras M-N, Tanoé F (1995) Corps biquadratiques monogènes. Manuscr Math 86:63–79

    Article  MATH  Google Scholar 

  33. Győry K (1976) Sur les polynômes à coefficients entiers et de discriminant donné, III. Publ Math (Debr) 23:141–165

    Google Scholar 

  34. Hagedorn TR (2000) General formulas for solving solvable sextic equations. J Algebra 233:704–757

    Article  MathSciNet  MATH  Google Scholar 

  35. Hasse H (1930) Arithmetischen Theorie der kubischen Zahlkörper auf klassenkörper-theoretischer Grundlage. Math Z 31:565–582

    Article  MathSciNet  MATH  Google Scholar 

  36. Heegner K (1952) Diophantische Analysis und Modulfunktionen. Math Z 56:227–253

    Article  MathSciNet  MATH  Google Scholar 

  37. Herz CS (1966) Construction of class fields. In: Seminar on complex multiplication. Lecture notes in math., vol 21. Springer, Berlin, pp VII-1–VII-21

    Chapter  Google Scholar 

  38. Hindry M (2008) Arithmétique. Calvage & Mounet, Paris

    MATH  Google Scholar 

  39. Iwaniec H, Kowalski E (2004) Analytic number theory. Colloquium publications, vol 53. Am. Math. Soc., Providence

    MATH  Google Scholar 

  40. Janusz G (1996) Algebraic number fields. Graduate studies in mathematics, vol 7, 2nd edn. Amer. Math. Soc., Providence

    MATH  Google Scholar 

  41. Landau E (1903) Neuer Beweis des Primzahlsatzes und Beweis des Primidealsatzes. Math Ann 56:645–670

    Article  MathSciNet  MATH  Google Scholar 

  42. Landau E (1927) Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale. Teubner, Leipzig. 2nd edition: Chelsea, 1949

    MATH  Google Scholar 

  43. Lang S (1993) Algebra, 3rd edn. Addison-Wesley, Reading

    MATH  Google Scholar 

  44. Lang S (1994) Algebraic number theory. GTM, vol 110, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  45. Lebacque F (2007) Generalized Mertens and Brauer–Siegel theorems. Acta Arith 130:333–350

    Article  MathSciNet  MATH  Google Scholar 

  46. Llorente P, Nart E (1983) Effective determination of the decomposition of the rational primes in a cubic field. Proc Am Math Soc 87:579–582

    Article  MathSciNet  MATH  Google Scholar 

  47. Louboutin S (1998) Majorations explicites du résidu au point 1 des fonctions zêta de certains corps de nombres. J Math Soc Jpn 50:57–69

    Article  MathSciNet  MATH  Google Scholar 

  48. Louboutin S (2000) Explicit bounds for residues of Dedekind zeta functions, values of L-functions at s=1, and relative class number. J Number Theory 85:263–282

    Article  MathSciNet  MATH  Google Scholar 

  49. Louboutin S (2003) Explicit lower bounds for residues of Dedekind zeta functions at s=1 and relative class number of CM-fields. Trans Am Math Soc 355:3079–3098

    Article  MathSciNet  MATH  Google Scholar 

  50. Lavallee MJ, Spearman BK, Williams KS, Yang Q (2005) Dihedral quintic fields with a power basis. Math J Okayama Univ 47:75–79

    MathSciNet  MATH  Google Scholar 

  51. Murty MR, Order JV (2007) Counting integral ideals in a number fields. Expo Math 25:53–66

    Article  MathSciNet  MATH  Google Scholar 

  52. Mollin RA (1999) Algebraic number theory. Chapman and Hall/CRC, London

    MATH  Google Scholar 

  53. Narkiewicz W (2004) Elementary and analytic theory of algebraic numbers. SMM, 3rd edn. Springer, Berlin

    MATH  Google Scholar 

  54. Neukirch J (2010) Algebraic number theory. A series of comprehensive studies in mathematics, vol 322. Springer, Berlin

    Google Scholar 

  55. Odlyzko AM (1976) Lower bounds for discriminants of number fields. Acta Arith 29:275–297

    MathSciNet  MATH  Google Scholar 

  56. Pohst M (1977) Regulatorabschätzungen für total reelle algebraische Zahlkörper. J Number Theory 9:459–492

    Article  MathSciNet  MATH  Google Scholar 

  57. Poitou G (1977) Minorations de discriminants (d’après AM Odlyzko). Séminaire Bourbaki, vol 1975/76, 28ème année. Springer, Berlin, pp 136–153

    Google Scholar 

  58. Prasolov VV (2004) Polynomials. ACM, vol 11. Springer, Berlin

    MATH  Google Scholar 

  59. Ramaré O (2001) Approximate formulæ for L(1,χ). Acta Arith 100:245–266

    Article  MathSciNet  MATH  Google Scholar 

  60. Remak R (1932) Über die Abchätzung des absoluten Betrages des Regulator eines algebraisches Zahlkörpers nach unten. J Reine Angew Math 167:360–378

    Google Scholar 

  61. Remak R (1952) Über Grössenbeziehungen zwischen Diskriminante und Regulator eines algebraischen Zahlkörpers. Compos Math 10:245–285

    MathSciNet  MATH  Google Scholar 

  62. Ribenboim P (1988) Euler’s famous prime generating polynomial and the class number of imaginary quadratic fields. Enseign Math 34:23–42

    MathSciNet  MATH  Google Scholar 

  63. Ribenboim P (2001) Classical theory of algebraic numbers. Universitext. Springer, Berlin

    MATH  Google Scholar 

  64. Rose HE (1994) A course in number theory. Oxford Science Publications, London

    MATH  Google Scholar 

  65. Samuel P (1971) Théorie Algébrique des Nombres. Collection Méthodes. Hermann, Paris

    MATH  Google Scholar 

  66. Silverman J (1984) An inequality relating the regulator and the discriminant of a number field. J Number Theory 19:437–442

    Article  MathSciNet  MATH  Google Scholar 

  67. Soicher L (1981) The computation of Galois groups. PhD thesis, Concordia Univ., Montréal

    Google Scholar 

  68. Sokolovskiǐ AV (1968) A theorem on the zeros of the Dedekind zeta function and the distance between neighbouring prime ideals (Russian). Acta Arith 13:321–334

    MathSciNet  Google Scholar 

  69. Stewart I, Tall D (2002) Algebraic number theory and Fermat’s last theorem, 3rd edn. AK Peters, Wellesley

    MATH  Google Scholar 

  70. Stark HM (1967) A complete determination of the complex quadratic fields of class-number one. Mich Math J 14:1–27

    Article  MATH  Google Scholar 

  71. Stark HM (1974) Some effective cases of the Brauer–Siegel theorem. Invent Math 23:123–152

    Article  Google Scholar 

  72. Stark HM (1975) The analytic theory of algebraic numbers. Bull Am Math Soc 81:961–972

    Article  MATH  Google Scholar 

  73. Stas W (1979) On the order of the Dedekind zeta-function near the line σ=1. Acta Arith 35:195–202

    MathSciNet  MATH  Google Scholar 

  74. Schoof R, Washington LC (1988) Quintic polynomials and real cyclotomic fields with large class number. Math Comput 50:543–556

    MathSciNet  MATH  Google Scholar 

  75. Spearman BK, Watanabe A, Williams KS (2006) PSL(2,5) sextic fields with a power basis. Kodai Math J 29:5–12

    Article  MathSciNet  MATH  Google Scholar 

  76. Uchida K (1994) On Silverman’s estimate of regulators. Tohoku Math J 46:141–145

    Article  MathSciNet  MATH  Google Scholar 

  77. Voronoï G (1894) Concerning algebraic integers derivable from a root of an equation of the third degree. Master’s thesis, St. Petersburg

    Google Scholar 

  78. Washington LC (1982) Introduction to cyclotomic fields. GTM, vol 83. Springer, New York. 2nd edition: 1997

    Book  MATH  Google Scholar 

  79. Zimmert R (1981) Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung. Invent Math 62:367–380

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Bordellès, O. (2012). Algebraic Number Fields. In: Arithmetic Tales. Universitext. Springer, London. https://doi.org/10.1007/978-1-4471-4096-2_7

Download citation

Publish with us

Policies and ethics