Integer Points Close to Smooth Curves

  • Olivier Bordellès
Part of the Universitext book series (UTX)


Some number-theoretic problems involve the number of points with integer coordinates very near some smooth plane curves. This chapter introduces the basic results and some refinements of the theory. Some criteria are investigated and the theorem of Huxley and Sargos is studied in detail. In the section Further Developments, we prove a particular case of a general theorem given by Filaseta and Trifonov improving on the distribution of squarefree numbers in short segments. The dual problem of square-full numbers in short intervals is also investigated.


  1. [BS94]
    Branton M, Sargos P (1994) Points entiers au voisinage d’une courbe plane à très faible courbure. Bull Sci Math 118:15–28 MathSciNetzbMATHGoogle Scholar
  2. [Fog41]
    Fogels E (1941) On the average values of arithmetic functions. Proc Camb Philos Soc 37:358–372 MathSciNetCrossRefGoogle Scholar
  3. [FT92]
    Filaseta M, Trifonov O (1992) On gaps between squarefree numbers II. J Lond Math Soc 45:215–221 MathSciNetzbMATHCrossRefGoogle Scholar
  4. [FT96]
    Filaseta M, Trifonov O (1996) The distribution of fractional parts with application to gap results in number theory. Proc Lond Math Soc 73:241–278 MathSciNetzbMATHCrossRefGoogle Scholar
  5. [GK91]
    Graham SW, Kolesnik G (1991) Van der Corput’s method of exponential sums. London math. soc. lect. note, vol 126. Cambridge University Press, Cambridge CrossRefGoogle Scholar
  6. [Gor39]
    Gorny A (1939) Contribution à l’étude des fonctions dérivables d’une variable réelle. Acta Math 71:317–358 MathSciNetCrossRefGoogle Scholar
  7. [HS95]
    Huxley MN, Sargos P (1995) Points entiers au voisinage d’une courbe plane de classe C n. Acta Arith 69:359–366 MathSciNetzbMATHGoogle Scholar
  8. [HS06]
    Huxley MN, Sargos P (2006) Points entiers au voisinage d’une courbe plane de classe C n, II. Funct Approx Comment Math 35:91–115 MathSciNetzbMATHCrossRefGoogle Scholar
  9. [HT96]
    Huxley MN, Trifonov O (1996) The square-full numbers in an interval. Math Proc Camb Philos Soc 119:201–208 MathSciNetzbMATHCrossRefGoogle Scholar
  10. [Hux96]
    Huxley MN (1996) Area, lattice points and exponential sums. Oxford Science Publications, London zbMATHGoogle Scholar
  11. [Hux99]
    Huxley MN (1999) The integer points close to a curve III. In: Győry et al. (eds) Number theory in progress, vol 2. de Gruyter, Berlin, pp 911–940 Google Scholar
  12. [Hux07]
    Huxley MN (2007) The integer points in a plane curve. Funct Approx Comment Math 37:213–231 MathSciNetzbMATHCrossRefGoogle Scholar
  13. [Kon98]
    Konyagin S (1998) Estimates for the least prime factor of a binomial coefficient. Mathematika 45:41–55 MathSciNetGoogle Scholar
  14. [Man52]
    Mandelbrojt S (1952) Séries Adhérentes, Régularisation des Suites, Applications. Gauthier-Villars, Paris zbMATHGoogle Scholar
  15. [Ric54]
    Richert HE (1954) On the difference between consecutive squarefree numbers. J Lond Math Soc 29:16–20 MathSciNetzbMATHCrossRefGoogle Scholar
  16. [Rot51]
    Roth KF (1951) On the gaps between squarefree numbers. J Lond Math Soc 26:263–268 zbMATHCrossRefGoogle Scholar
  17. [Shi80]
    Shiu P (1980) On the number of square-full integers between successive squares. Mathematika 27:171–178 MathSciNetzbMATHCrossRefGoogle Scholar
  18. [Sri62]
    Srinivasan B-R (1962) On Van der Corput’s and Nieland’s results on the Dirichlet’s divisor problem and the circle problem. Proc Natl Inst Sci India, Part A 28:732–742 zbMATHGoogle Scholar
  19. [Tri02]
    Trifonov O (2002) Lattice points close to a smooth curve and squarefull numbers in short intervals. J Lond Math Soc 65:309–319 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  • Olivier Bordellès
    • 1
  1. 1.AiguilheFrance

Personalised recommendations