Arithmetic Functions

  • Olivier Bordellès
Part of the Universitext book series (UTX)


This chapter may be viewed as an extension of the previous one, in the sense that multiplicative functions may generalize Euclid’s fundamental theorem of integer factorizations. The text is aimed at introducing the Dirichlet convolution product, thus giving a ring structure to the set of arithmetic functions, and then establishing some useful summation results for multiplicative functions with the help of the Möbius inversion formula. The section Further Developments is devoted to a complete study of Dirichlet series from an arithmetic viewpoint and we also provide some estimates for other types of summation, such as multiplicative functions over short intervals or additive functions. Finally, a brief account of Selberg’s sieve and the large sieve is also given.


Asymptotic Formula Dirichlet Series Inversion Formula Multiplicative Function Average Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [Bom74]
    Bombieri E (1974) Le Grand Crible dans la Théorie Analytique des Nombres, vol 18. Société Mathématique de France, Paris Google Scholar
  2. [Bor09]
    Bordellès O (2009) Le problème des diviseurs de Dirichlet. Quadrature 71:21–30 zbMATHCrossRefGoogle Scholar
  3. [Bor10]
    Bordellès O (2010) The composition of the gcd and certain arithmetic functions. J Integer Seq 13, Art. 10.7.1 Google Scholar
  4. [Erd57]
    Erdős P (1957) Some unsolved problems. Mich Math J 4:291–300 CrossRefGoogle Scholar
  5. [FI05]
    Friedlander J, Iwaniec H (2005) Summation formulæ for coefficients of L-functions. Can J Math 57:494–505 MathSciNetzbMATHCrossRefGoogle Scholar
  6. [FI10]
    Friedlander J, Iwaniec H (2010) Opera de Cribro. Colloquium publications, vol 57. Am. Math. Soc., Providence zbMATHGoogle Scholar
  7. [Gal67]
    Gallagher PX (1967) The large sieve. Mathematika 14:14–20 MathSciNetzbMATHCrossRefGoogle Scholar
  8. [Gou72]
    Gould HW (1972) Combinatorial identities. A standardized set of tables listing 500 binomial coefficients summations. Morgantown, West Virginia Google Scholar
  9. [Gup78]
    Gupta H (1978) Finite differences of the partition function. Math Comput 32:1241–1243 zbMATHCrossRefGoogle Scholar
  10. [Hal68]
    Halász G (1968) Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen. Acta Math Acad Sci Hung 19:365–403 zbMATHCrossRefGoogle Scholar
  11. [HR79]
    Halberstam H, Richert H-E (1979) On a result of R.R. Hall. J Number Theory 11:76–89 MathSciNetzbMATHCrossRefGoogle Scholar
  12. [HR11]
    Halberstam H, Richert H-E (2011) Sieve methods. Dover, Mineola Google Scholar
  13. [HT88]
    Hall RR, Tenenbaum G (1988) Divisors. Cambridge University Press, Cambridge zbMATHCrossRefGoogle Scholar
  14. [Ivi85]
    Ivić A (1985) The Riemann zeta-function. Theory and applications. Wiley, New York. 2nd edition: Dover, 2003 Google Scholar
  15. [IK04]
    Iwaniec H, Kowalski E (2004) Analytic number theory. Colloquium publications, vol 53. Am. Math. Soc., Providence zbMATHGoogle Scholar
  16. [Krä70]
    Krätzel E (1970) Die maximale Ordnung der Anzahl der wesentlich verschiedenen Abelschen Gruppen n-ter Ordnung. Q J Math (2) Oxford Ser 21:273–275 zbMATHCrossRefGoogle Scholar
  17. [Kub71]
    Kubilius J (1971) The method of Dirichlet generating series in the theory of distribution of additive arithmetic functions. I. Liet Mat Rink 11:125–134 MathSciNetzbMATHGoogle Scholar
  18. [Lan27]
    Landau E (1927) Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale. Teubner, Leipzig. 2nd edition: Chelsea, 1949 zbMATHGoogle Scholar
  19. [LF67]
    Levin BV, Fainleb AS (1967) Application of some integral equations to problems of number theory. Russ Math Surv 22:119–204 zbMATHCrossRefGoogle Scholar
  20. [Lin41]
    Linnik JV (1941) The large sieve. Dokl Akad Nauk SSSR 30:292–294 MathSciNetGoogle Scholar
  21. [Mar95]
    Marraki ME (1995) Fonction sommatoire de la fonction de Möbius, 3. Majorations effectives forte. J Théor Nr Bordx 7:407–433 zbMATHCrossRefGoogle Scholar
  22. [Mar02]
    Martin G (2002) An asymptotic formula for the number of smooth values of a polynomial. J Number Theory 93:108–182 MathSciNetzbMATHCrossRefGoogle Scholar
  23. [Mon78]
    Montgomery HL (1978) The analytic principle of the large sieve. Bull Am Math Soc 84:547–567 zbMATHCrossRefGoogle Scholar
  24. [Mot79]
    Motohashi Y (1979) A note on Siegel’s zeros. Proc Jpn Acad 55:190–192 MathSciNetzbMATHCrossRefGoogle Scholar
  25. [MV73]
    Montgomery HL, Vaughan RC (1973) The large sieve. Mathematika 20:119–134 MathSciNetzbMATHCrossRefGoogle Scholar
  26. [NT98]
    Nair M, Tenenbaum G (1998) Short sums of certain arithmetic functions. Acta Math 180:119–144 MathSciNetzbMATHCrossRefGoogle Scholar
  27. [PT78]
    Parson A, Tull J (1978) Asymptotic behavior of multiplicative functions. J Number Theory 10:395–420 MathSciNetzbMATHCrossRefGoogle Scholar
  28. [Shi80]
    Shiu P (1980) A Brun–Titchmarsh theorem for multiplicative functions. J Reine Angew Math 313:161–170 MathSciNetzbMATHGoogle Scholar
  29. [Siv89]
    Sivaramakrishnan R (1989) Classical theory of arithmetical functions. Pure and applied mathematics, vol 126. Dekker, New York Google Scholar
  30. [Skr74]
    Skrabutenas R (1974) Asymptotic expansion of sums of multiplicative functions. Liet Mat Rink 14:115–126 MathSciNetzbMATHGoogle Scholar
  31. [SS94]
    Schwarz L, Spilker J (1994) Arithmetical functions. Cambridge University Press, Cambridge zbMATHGoogle Scholar
  32. [Sur71]
    Suryanarayana D (1971) The number of k-free divisors of an integer. Acta Arith 47:345–354 MathSciNetGoogle Scholar
  33. [SW00]
    Sargos P, Wu J (2000) Multiple exponential sums with monomials and their applications in number theory. Acta Math Hung 88:333–354 MathSciNetCrossRefGoogle Scholar
  34. [Tit39]
    Titchmarsh EC (1939) The theory of functions. Oxford University Press, London. 2nd edition: 1979 zbMATHCrossRefGoogle Scholar
  35. [Tul78]
    Tuljaganova MI (1978) A generalization of a theorem of Halász. Izv Akad Nauk SSSR 4:35–40 MathSciNetGoogle Scholar
  36. [Vau73]
    Vaughan RC (1973) Some applications of Montgomery’s sieve. J Number Theory 5:641–679 MathSciNetCrossRefGoogle Scholar
  37. [Vor04]
    Voronoï G (1904) Sur une fonction transcendante et ses applications à la sommation de quelques séries. Ann Sci Éc Norm Super 21:207–268 zbMATHGoogle Scholar
  38. [Wir61]
    Wirsing E (1961) Das asymptotische Verhalten vun Summen über multiplikative Funktionen. Math Ann 143:75–102 MathSciNetzbMATHCrossRefGoogle Scholar
  39. [Wu95]
    Wu J (1995) Problèmes de diviseurs exponentiels et entiers exponentiellement sans facteur carré. J Théor Nr Bordx 7:133–141 zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  • Olivier Bordellès
    • 1
  1. 1.AiguilheFrance

Personalised recommendations