Skip to main content

Bézout and Gauss

  • Chapter
Arithmetic Tales

Part of the book series: Universitext ((UTX))

  • 2420 Accesses

Abstract

The theorems of Bachet–Bézout and Gauss are the cornerstones of elementary methods in number theory. Many applications of these results are studied, in particular Diophantine problems. The section Further Developments investigates the number of integer solutions of certain linear Diophantine equations, i.e. the number of certain restricted partitions of an integer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We could also use Fermat’s little theorem. See Theorem 3.15.

  2. 2.

    When k=1, this obviously means \(\mathcal{A}_{1}= \{ 1\}\).

  3. 3.

    See Exercise 11 for another proof of this identity.

  4. 4.

    One can make use of Pick’s formula which states that the number \(\mathcal{N}_{\mathrm{int}}\) inside a convex integer polygon \(\mathcal{P}\) is given by

    $$\mathcal{N}_{\mathrm{int}} = \mathrm{area} ( \mathcal{P} ) - \frac {\mathcal{N}_{\partial\mathcal{P}}}{2} + 1 $$

    where \(\mathcal{N}_{\partial\mathcal{P}}\) is the number of integer points on the edges of the polygon.

References

  1. Beck M, Robins S (2004) A formula related to the Frobenius problem in 2 dimensions. In: Chudnovsky D, Chudnovsky G, Nathanson M (eds) Number theory. New York seminar 2003. Springer, Berlin, pp 17–23

    Google Scholar 

  2. Beck M, Zacks S (2004) Refined upper bounds for the linear Diophantine problem of Frobenius. Adv Appl Math 32:454–467

    Article  MathSciNet  MATH  Google Scholar 

  3. Gould HW (1972) Combinatorial identities. A standardized set of tables listing 500 binomial coefficients summations. Morgantown, West Virginia

    Google Scholar 

  4. Odlyzko AM (1995) Asymptotic enumeration methods. Elsevier, Amsterdam

    Google Scholar 

  5. Popoviciu T (1953) Asupra unei probleme de patitie a numerelor. Stud Cercet Stiint—Acad RP Rom, Fil Cluj 4:7–58

    Google Scholar 

  6. Shiu P (2006) Moment sums associated with linear binary forms. Am Math Mon 113:545–550

    Article  MathSciNet  MATH  Google Scholar 

  7. Tripathi A (2000) The number of solutions to ax+by=n. Fibonacci Q 38:290–293

    MATH  Google Scholar 

  8. Wilf HS (1990) Generatingfunctionology. Academic Press, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Bordellès, O. (2012). Bézout and Gauss. In: Arithmetic Tales. Universitext. Springer, London. https://doi.org/10.1007/978-1-4471-4096-2_2

Download citation

Publish with us

Policies and ethics