Curvature in Triangle Meshes

  • Jakob Andreas Bærentzen
  • Jens Gravesen
  • François Anton
  • Henrik Aanæs


In many cases notions from differential geometry can be usefully extended to piecewise planar surfaces, and this chapter covers curvature measures on triangle meshes. A frequently used principle is to obtain a smooth surface approximation and to estimate the curvature from this approximation. Alternatively, the integral of some curvature measures can be computed from a small region of the mesh and then normalized by dividing by the area of that region.

Following these principles, we first discuss how to extend the definition of a surface normal to the edges and vertices of a triangle mesh. Next, we cover the estimation of Gaußian and mean curvature on a triangle mesh. Finally, techniques for computing the shape operator are discussed—followed by a discussion on how to obtain the principal curvatures from the shape operator.




  1. 1.
    Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2(1), 15–36 (1993) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’99, pp. 317–324. ACM Press, New York (1999). doi: 10.1145/311535.311576 Google Scholar
  3. 3.
    Thürmer, G., Wüthrich, C.A.: Computing vertex normals from polygonal facets. J. Graph. Tools 3(1), 43–46 (1998) MATHCrossRefGoogle Scholar
  4. 4.
    Bærentzen, J., Aanæs, H.: Signed distance computation using the angle weighted pseudo-normal. IEEE Trans. Vis. Comput. Graph. 11(3), 243–253 (2005) CrossRefGoogle Scholar
  5. 5.
    do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976) MATHGoogle Scholar
  6. 6.
    Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Hege, H.-C., Polthier, K. (eds.) Visualization and Mathematics III, pp. 35–57. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  7. 7.
    Cohen-Steiner, D., Morvan, J.-M.: Restricted Delaunay triangulations and normal cycle. In: Proceedings of the Nineteenth Annual Symposium on Computational Geometry, SCG ’03, pp. 312–321. ACM Press, New York (2003). doi: 10.1145/777792.777839 Google Scholar
  8. 8.
    Hildebrandt, K., Polthier, K.: Anisotropic filtering of non-linear surface features. Comput. Graph. Forum 23(3), 391–400 (2004) CrossRefGoogle Scholar
  9. 9.
    Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. John Hopkins, Baltimore (1996) MATHGoogle Scholar
  10. 10.
    Hamann, B.: Curvature approximation for triangulated surfaces. In: Geometric Modelling, pp. 139–153. Springer, London (1993) CrossRefGoogle Scholar
  11. 11.
    Surazhsky, T., Magid, E., Soldea, O., Elber, G., Rivlin, E.: A comparison of Gaussian and mean curvatures triangular meshes. In: Proceedings of IEEE International Automation (ICRA2003), Taipei, Taiwan, 14–19 September, pp. 1021–1026 (2003) Google Scholar
  12. 12.
    Taubin, G.: Estimating the tensor of curvature of a surface from a polyhedral approximation. In: Proceedings of the Fifth International Conference on Computer Vision, ICCV ’95, p. 902. IEEE Comput. Soc., Washington (1995) Google Scholar
  13. 13.
    Hertzmann, A., Zorin, D.: Illustrating smooth surfaces. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’00, pp. 517–526. ACM, New York (2000). doi: 10.1145/344779.345074 Google Scholar
  14. 14.
    Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., Desbrun, M.: Anisotropic polygonal remeshing. ACM Trans. Graph. 22(3), 485–493 (2003). doi: 10.1145/882262.882296 CrossRefGoogle Scholar
  15. 15.
    Kälberer, F., Nieser, M., Polthier, K.: QuadCover-Surface Parameterization using Branched Coverings. Comput. Graph. Forum 26(3), 375–384 (2007) MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  • Jakob Andreas Bærentzen
    • 1
  • Jens Gravesen
    • 2
  • François Anton
    • 1
  • Henrik Aanæs
    • 1
  1. 1.Department of Informatics and Mathematical ModellingTechnical University of DenmarkKongens LyngbyDenmark
  2. 2.Department of MathematicsTechnical University of DenmarkKongens LyngbyDenmark

Personalised recommendations