Advertisement

Volumetric Methods for Surface Reconstruction and Manipulation

  • Jakob Andreas BærentzenEmail author
  • Jens Gravesen
  • François Anton
  • Henrik Aanæs

Abstract

The RBF method (introduced in the previous chapter) involves solving a dense linear system. For huge numbers of points, this becomes too computationally demanding. Like the RBF method, volumetric methods for reconstruction produce an implicit representation of the reconstructed surface, but instead of solving a linear system, these methods proceed by solving a partial differential equation discretized on a 3D grid. Volumetric reconstruction algorithms become rather simple: essentially it boils down to repeatedly smoothing data on a 3D grid while keeping the values at some grid points constant. Having discussed the basic approach, we also explain how normals for point data can be estimated, since point normal estimates are generally required for volumetric reconstruction.

This chapter also covers the Level Set Method which, again, is based on the implicit representation of 3D surface using discrete 3D grids. However the LSM allows us to deform a surface. Distance fields are typically used as the input to the LSM and they have numerous other uses, so this chapter also covers the construction of 3D distance fields from triangle meshes.

Keywords

Curvature Flow Delaunay Triangulation Implicit Representation Input Point Volumetric Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Davis, J., Marschner, S., Garr, M., Levoy, M.: Filling holes in complex surfaces using volumetric diffusion. In: First International Symposium on 3D Data Processing Visualization and Transmission, 2002. Proceedings, pp. 428–861 (2002) CrossRefGoogle Scholar
  2. 2.
    Board, C.E.: CGAL Manuals. http://www.cgal.org/Manual/
  3. 3.
    Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. Comput. Graph. 26(2), 71–78 (1992) CrossRefGoogle Scholar
  4. 4.
    Alliez, P., Cohen-Steiner, D., Tong, Y., Desbrun, M.: Voronoi-based variational reconstruction of unoriented point sets. In: Proceedings of the Fifth Eurographics Symposium on Geometry Processing, pp. 39–48 (2007). Eurographics Association Google Scholar
  5. 5.
    Paulsen, R.R., Baerentzen, J.A., Larsen, R.: Markov random field surface reconstruction. In: IEEE Transactions on Visualization and Computer Graphics, pp. 636–646 (2009) Google Scholar
  6. 6.
    Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, pp. 61–70 (2006). Eurographics Association Google Scholar
  7. 7.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods, 2nd edn. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (1999) zbMATHGoogle Scholar
  8. 8.
    Leveque, R.J.: Numerical Methods for Conservation Laws. Birkhäuser, Boston (1992) zbMATHCrossRefGoogle Scholar
  9. 9.
    Osher, S., Paragios, N. (eds.): Geometric Level Set Methods in Imaging, Vision, and Graphics. Springer, Berlin (2003) zbMATHGoogle Scholar
  10. 10.
    Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. USA 93(4), 1591–1595 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Bærentzen, J.A.: On the implementation of fast marching methods for 3d lattices. Technical report IMM-REP-2001-13, DTU.IMM (2001). http://www.imm.dtu.dk/~jab/publications.html
  12. 12.
    Jones, M., Bærentzen, A., Sramek, M.: 3D distance fields: a survey of techniques and applications. Trans. Vis. Comput. Graph. 12(4), 581–599 (2006) CrossRefGoogle Scholar
  13. 13.
    Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A PDE-based fast local level set method. J. Comput. Phys. 155(2), 410–438 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114(1), 146–159 (1994) zbMATHCrossRefGoogle Scholar
  15. 15.
    Rouy, E., Tourin, A.: A viscosity solutions approach to shape-from-shading. SIAM J. Numer. Anal. 29(3), 867–884 (1992). doi: 10.1137/0729053 MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Bærentzen, J.A., Christensen, N.J.: Interactive modelling of shapes using the level-set method. Int. J. Shape Model. 8(2), 79–97 (2002) zbMATHCrossRefGoogle Scholar
  17. 17.
    Mauch, S.: A fast algorithm for computing the closest point and distance transform. Technical report caltechASCI/2000.077, Applied and Computational Mathematics, California Institute of Technology (2000) Google Scholar
  18. 18.
    Erleben, K., Dohlmann, H.: Signed distance fields using single-pass GPU scan conversion of tetrahedra. In: Nguyen, H. (ed.) GPU Gems 3, pp. 741–763. Addison–Wesley, Upper Saddle River (2008) Google Scholar
  19. 19.
    Bærentzen, J., Aanæs, H.: Signed distance computation using the angle weighted pseudo-normal. IEEE Trans. Vis. Comput. Graph. 11(3), 243–253 (2005) CrossRefGoogle Scholar
  20. 20.
    Guéziec, A.: Meshsweeper: Dynamic point-to-polygonal mesh distance and applications. IEEE Trans. Vis. Comput. Graph. 7(1), 47–60 (2001) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  • Jakob Andreas Bærentzen
    • 1
    Email author
  • Jens Gravesen
    • 2
  • François Anton
    • 1
  • Henrik Aanæs
    • 1
  1. 1.Department of Informatics and Mathematical ModellingTechnical University of DenmarkKongens LyngbyDenmark
  2. 2.Department of MathematicsTechnical University of DenmarkKongens LyngbyDenmark

Personalised recommendations