Skip to main content

Volumetric Methods for Surface Reconstruction and Manipulation

  • Chapter
  • 4447 Accesses

Abstract

The RBF method (introduced in the previous chapter) involves solving a dense linear system. For huge numbers of points, this becomes too computationally demanding. Like the RBF method, volumetric methods for reconstruction produce an implicit representation of the reconstructed surface, but instead of solving a linear system, these methods proceed by solving a partial differential equation discretized on a 3D grid. Volumetric reconstruction algorithms become rather simple: essentially it boils down to repeatedly smoothing data on a 3D grid while keeping the values at some grid points constant. Having discussed the basic approach, we also explain how normals for point data can be estimated, since point normal estimates are generally required for volumetric reconstruction.

This chapter also covers the Level Set Method which, again, is based on the implicit representation of 3D surface using discrete 3D grids. However the LSM allows us to deform a surface. Distance fields are typically used as the input to the LSM and they have numerous other uses, so this chapter also covers the construction of 3D distance fields from triangle meshes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We say ‘similar’ because the blurring is done a bit differently, but the principle is the same.

  2. 2.

    Using MeshLab’s implementation: http://meshlab.sourceforge.net/.

  3. 3.

    For simplicity and without loss of generality, we will assume in the following that unit time step is used and that the grid spacing is unit.

References

  1. Davis, J., Marschner, S., Garr, M., Levoy, M.: Filling holes in complex surfaces using volumetric diffusion. In: First International Symposium on 3D Data Processing Visualization and Transmission, 2002. Proceedings, pp. 428–861 (2002)

    Chapter  Google Scholar 

  2. Board, C.E.: CGAL Manuals. http://www.cgal.org/Manual/

  3. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. Comput. Graph. 26(2), 71–78 (1992)

    Article  Google Scholar 

  4. Alliez, P., Cohen-Steiner, D., Tong, Y., Desbrun, M.: Voronoi-based variational reconstruction of unoriented point sets. In: Proceedings of the Fifth Eurographics Symposium on Geometry Processing, pp. 39–48 (2007). Eurographics Association

    Google Scholar 

  5. Paulsen, R.R., Baerentzen, J.A., Larsen, R.: Markov random field surface reconstruction. In: IEEE Transactions on Visualization and Computer Graphics, pp. 636–646 (2009)

    Google Scholar 

  6. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, pp. 61–70 (2006). Eurographics Association

    Google Scholar 

  7. Sethian, J.A.: Level Set Methods and Fast Marching Methods, 2nd edn. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  8. Leveque, R.J.: Numerical Methods for Conservation Laws. Birkhäuser, Boston (1992)

    Book  MATH  Google Scholar 

  9. Osher, S., Paragios, N. (eds.): Geometric Level Set Methods in Imaging, Vision, and Graphics. Springer, Berlin (2003)

    MATH  Google Scholar 

  10. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. USA 93(4), 1591–1595 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bærentzen, J.A.: On the implementation of fast marching methods for 3d lattices. Technical report IMM-REP-2001-13, DTU.IMM (2001). http://www.imm.dtu.dk/~jab/publications.html

  12. Jones, M., Bærentzen, A., Sramek, M.: 3D distance fields: a survey of techniques and applications. Trans. Vis. Comput. Graph. 12(4), 581–599 (2006)

    Article  Google Scholar 

  13. Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A PDE-based fast local level set method. J. Comput. Phys. 155(2), 410–438 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114(1), 146–159 (1994)

    Article  MATH  Google Scholar 

  15. Rouy, E., Tourin, A.: A viscosity solutions approach to shape-from-shading. SIAM J. Numer. Anal. 29(3), 867–884 (1992). doi:10.1137/0729053

    Article  MathSciNet  MATH  Google Scholar 

  16. Bærentzen, J.A., Christensen, N.J.: Interactive modelling of shapes using the level-set method. Int. J. Shape Model. 8(2), 79–97 (2002)

    Article  MATH  Google Scholar 

  17. Mauch, S.: A fast algorithm for computing the closest point and distance transform. Technical report caltechASCI/2000.077, Applied and Computational Mathematics, California Institute of Technology (2000)

    Google Scholar 

  18. Erleben, K., Dohlmann, H.: Signed distance fields using single-pass GPU scan conversion of tetrahedra. In: Nguyen, H. (ed.) GPU Gems 3, pp. 741–763. Addison–Wesley, Upper Saddle River (2008)

    Google Scholar 

  19. Bærentzen, J., Aanæs, H.: Signed distance computation using the angle weighted pseudo-normal. IEEE Trans. Vis. Comput. Graph. 11(3), 243–253 (2005)

    Article  Google Scholar 

  20. Guéziec, A.: Meshsweeper: Dynamic point-to-polygonal mesh distance and applications. IEEE Trans. Vis. Comput. Graph. 7(1), 47–60 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Andreas Bærentzen .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Bærentzen, J.A., Gravesen, J., Anton, F., Aanæs, H. (2012). Volumetric Methods for Surface Reconstruction and Manipulation. In: Guide to Computational Geometry Processing. Springer, London. https://doi.org/10.1007/978-1-4471-4075-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4075-7_17

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4074-0

  • Online ISBN: 978-1-4471-4075-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics