Skip to main content

Abstract

Face recognition using standard 2D images struggles to cope with changes in illumination and pose. 3D face recognition algorithms have been more successful in dealing with these challenges. 3D face shape data is used as an independent cue for face recognition and has also been combined with texture to facilitate multimodal face recognition. Additionally, 3D face models have been used for pose correction and calculation of the facial albedo map, which is invariant to illumination. Finally, 3D face recognition has also achieved significant success towards expression invariance by modeling non-rigid surface deformations, removing facial expressions or by using parts-based face recognition. This chapter gives an overview of 3D face recognition and details both well-established and more recent state-of-the-art 3D face recognition techniques in terms of their implementation and expected performance on benchmark datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This may be referred to as a 3D model, a 3D scan or a 3D image, depending on the mode of capture and how it is stored, as discussed in Chap. 1, Sect 1.1. Be careful to distinguish between a specific face model relating to a single specific 3D capture instance and a general face model, such as Blanz and Vetter’s morphable face model [11], which is generated from many registered 3D face captures.

  2. 2.

    3D points are structured in a rectangular array and since (x,y) values are included, strictly it is not a range image, which contains z-values only.

References

  1. Abate, A.F., Nappi, M., Riccio, D., Sabatino, G.: 2D and 3D face recognition: a survey. Pattern Recognit. Lett. 28, 1885–1906 (2007)

    Article  Google Scholar 

  2. Achermann, B., Jiang, X., Bunke, H.: Face recognition using range images. In: Int. Conference on Virtual Systems and MultiMedia, pp. 129–136 (1997)

    Google Scholar 

  3. Adini, Y., Moses, Y., Shimon, U.: Face recognition: the problem of compensating for changes in illumination direction. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 721–732 (1997)

    Article  Google Scholar 

  4. Al-Osaimi, F., Bennamoun, M., Mian, A.: Integration of local and global geometrical cues for 3D face recognition. Pattern Recognit. 41(3), 1030–1040 (2008)

    Article  MATH  Google Scholar 

  5. Al-Osaimi, F., Bennamoun, M., Mian, A.: An expression deformation approach to non-rigid 3D face recognition. Int. J. Comput. Vis. 81(3), 302–316 (2009)

    Article  Google Scholar 

  6. Angel, E.: Interactive Computer Graphics. Addison Wesley, Reading (2009)

    Google Scholar 

  7. Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell. 9(5), 698–700 (1987)

    Article  Google Scholar 

  8. Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19, 711–720 (1997)

    Article  Google Scholar 

  9. Besl, P., McKay, H.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  10. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)

    MATH  Google Scholar 

  11. Blanz, V., Vetter, T.: Face recognition based on fitting a 3D morphable model. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1063–1074 (2003)

    Article  Google Scholar 

  12. Blanz, V., Scherbaum, K., Seidel, H.: Fitting a morphable model to 3D scans of faces. In: IEEE Int. Conference on Computer Vision, pp. 1–8 (2007)

    Chapter  Google Scholar 

  13. The Bosphorus 3D face database: http://bosphorus.ee.boun.edu.tr/. Accessed 5th July 2011

  14. Bowyer, K., Chang, K., Flynn, P.: A survey of approaches and challenges in 3D and multi-modal 3D + 2D face recognition. Comput. Vis. Image Underst. 101, 1–15 (2006)

    Article  Google Scholar 

  15. Bronstein, A., Bronstein, M., Kimmel, R.: Three-dimensional face recognition. Int. J. Comput. Vis. 64(1), 5–30 (2005)

    Article  Google Scholar 

  16. CASIA-3D FaceV1: http://biometrics.idealtest.org. Accessed 5th July 2011

  17. Chang, K., Bowyer, K., Flynn, P.: Face recognition using 2D and 3D facial data. In: Multimodal User Authentication Workshop, pp. 25–32 (2003)

    Google Scholar 

  18. Chang, K., Bowyer, K., Flynn, P.: An evaluation of multimodal 2D+3D face biometrics. IEEE Trans. Pattern Anal. Mach. Intell. 27(4), 619–624 (2005)

    Article  Google Scholar 

  19. Chang, K., Bowyer, K., Flynn, P.: Multiple nose region matching for 3D face recognition under varying facial expression. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1695–1700 (2006)

    Article  Google Scholar 

  20. Chua, C., Jarvis, R.: Point signatures: a new representation for 3D object recognition. Int. J. Comput. Vis. 25(1), 63–85 (1997)

    Article  Google Scholar 

  21. Chua, C., Han, F., Ho, Y.: 3D human face recognition using point signatures. In: Proc. IEEE Int. Workshop Analysis and Modeling of Faces and Gestures, pp. 233–238 (2000)

    Google Scholar 

  22. Colombo, A., Cusano, C., Schettini, R.: 3D face detection using curvature analysis. Pattern Recognit. 39(3), 444–455 (2006)

    Article  MATH  Google Scholar 

  23. Creusot, C., Pears, N.E., Austin, J.: 3D face landmark labelling. In: Proc. 1st ACM Workshop on 3D Object Retrieval (3DOR’10), pp. 27–32 (2010)

    Chapter  Google Scholar 

  24. Creusot, C., Pears, N.E., Austin, J.: Automatic keypoint detection on 3D faces using a dictionary of local shapes. In: The First Joint 3DIM/3DPVT Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission, pp. 16–19 (2011)

    Google Scholar 

  25. Creusot, C.: Automatic landmarking for non-cooperative 3d face recognition. Ph.D. thesis, Department of Computer Science, University of York, UK (2011)

    Google Scholar 

  26. DeCarlo, D., Metaxas, D.: Optical flow constraints on deformable models with applications to face tracking. Int. J. Comput. Vis. 38(2), 99–127 (2000)

    Article  MATH  Google Scholar 

  27. D’Erico, J.: Surface Fitting Using Gridfit. MATLAB Central File Exchange (2006)

    Google Scholar 

  28. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience, New York (2001)

    MATH  Google Scholar 

  29. Face recognition homepage: http://www.face-rec.org. Accessed 24th August 2011

  30. Faltemier, T.C., Bowyer, K.W., Flynn, P.J.: Using a multi-instance enrollment representation to improve 3D face recognition. In: 1st IEEE Int. Conf. on Biometrics: Theory, Applications, and Systems (BTAS’07) (2007)

    Google Scholar 

  31. Faltemier, T., Bowyer, K., Flynn, P.: A region ensemble for 3-D face recognition. IEEE Trans. Inf. Forensics Secur. 3(1), 62–73 (2008)

    Article  Google Scholar 

  32. Farkas, L.: Anthropometry of the Head and Face. Raven Press, New York (1994)

    Google Scholar 

  33. Fisher, N., Lee, A.: Correlation coefficients for random variables on a unit sphere or hypersphere. Biometrika 73(1), 159–164 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  34. Fitzgibbon, A.W.: Robust registration of 2D and 3D point sets. Image Vis. Comput. 21, 1145–1153 (2003)

    Article  Google Scholar 

  35. Fleishman, S., Drori, I., Cohen-Or, D.: Bilateral mesh denoising. ACM Trans. Graph. 22(3), 950–953 (2003)

    Article  Google Scholar 

  36. Gao, H., Davis, J.W.: Why direct LDA is not equivalent to LDA. Pattern Recognit. 39, 1002–1006 (2006)

    Article  MATH  Google Scholar 

  37. Garland, M., Heckbert, P.: Surface simplification using quadric error metrics. In: Proceedings of SIGGRAPH (1997)

    Google Scholar 

  38. Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 6(23), 643–660 (2001)

    Article  Google Scholar 

  39. Gokberk, B., Irfanoglua, M., Arakun, L.: 3D shape-based face representation and feature extraction for face recognition. Image Vis. Comput. 24(8), 857–869 (2006)

    Article  Google Scholar 

  40. Gordon, G.: Face recognition based on depth and curvature feature. In: IEEE Computer Society Conference on CVPR, pp. 808–810 (1992)

    Google Scholar 

  41. Gupta, S., Markey, M., Bovik, A.: Anthropometric 3D face recognition. Int. J. Comput. Vis. doi:10.1007/s11263-010-0360-8 (2010)

    Google Scholar 

  42. Heckbert, P., Garland, M.: Survey of polygonal surface simplification algorithms. In: SIGGRAPH, Course Notes: Multiresolution Surface Modeling (1997)

    Google Scholar 

  43. Heseltine, T., Pears, N.E., Austin, J.: Three-dimensional face recognition: an fishersurface approach. In: Proc. Int. Conf. Image Analysis and Recognition, vol. II, pp. 684–691 (2004)

    Chapter  Google Scholar 

  44. Heseltine, T., Pears, N.E., Austin, J.: Three-dimensional face recognition: an eigensurface approach. In: Proc. IEEE Int. Conf. Image Processing, pp. 1421–1424 (2004)

    Google Scholar 

  45. Heseltine, T., Pears, N.E., Austin, J.: Three dimensional face recognition using combinations of surface feature map subspace components. Image Vis. Comput. 26(3), 382–396 (2008)

    Article  Google Scholar 

  46. Hesher, C., Srivastava, A., Erlebacher, G.: A novel technique for face recognition using range imaging. In: Int. Symposium on Signal Processing and Its Applications, pp. 201–204 (2003)

    Chapter  Google Scholar 

  47. Horn, B.: Robot Vision. MIT Press, Cambridge (1986). Chap. 16

    Google Scholar 

  48. Jain, A., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Trans. Circuits Syst. Video Technol. 14(1), 4–20 (2004)

    Article  Google Scholar 

  49. Johnson, A., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 674–686 (1999)

    Article  Google Scholar 

  50. Kakadiaris, I., Passalis, G., Theoharis, T., Toderici, G., Konstantinidis, I., Murtuza, N.: Multimodal face recognition: combination of geometry with physiological information. In: Proc. IEEE Int. Conf on Computer Vision and Pattern Recognition, pp. 1022–1029 (2005)

    Google Scholar 

  51. Kakadiaris, I., Passalis, G., Toderici, G., Murtuza, M., Lu, Y., Karampatziakis, N., Theoharis, T.: Three-dimensional face recognition in the presence of facial expressions: an annotated deformable model approach. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 640–649 (2007)

    Article  Google Scholar 

  52. Kimmel, R., Sethian, J.: Computing geodesic on manifolds. Proc. Natl. Acad. Sci. USA 95, 8431–8435 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  53. Klassen, E., Srivastava, A., Mio, W., Joshi, S.: Analysis of planar shapes using geodesic paths on shape spaces. IEEE Trans. Pattern Anal. Mach. Intell. 26(3), 372–383 (2004)

    Article  Google Scholar 

  54. Koenderink, J.J., van Doorn, A.J.: Surface shape and curvature scales. Image Vis. Comput. 10(8), 557–564 (1992)

    Article  Google Scholar 

  55. Lee, J., Milios, E.: Matching range images of human faces. In: Int. Conference on Computer Vision, pp. 722–726 (1990)

    Google Scholar 

  56. Lee, Y., Shim, J.: Curvature-based human face recognition using depth-weighted Hausdorff distance. In: Int. Conference on Image Processing, pp. 1429–1432 (2004)

    Google Scholar 

  57. Lo, T., Siebert, J.P.: Local feature extraction and matching on range images: 2.5D SIFT. Comput. Vis. Image Underst. 113(12), 1235–1250 (2009)

    Article  Google Scholar 

  58. Lu, X., Jain, A.K.: Deformation modeling for robust 3D face matching. In: Proc IEEE Int. Conf. on Computer Vision and Pattern Recognition, vol. 2, pp. 1377–1383 (2006)

    Google Scholar 

  59. Lu, X., Jain, A., Colbry, D.: Matching 2.5D scans to 3D models. IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 31–43 (2006)

    Article  Google Scholar 

  60. Mandal, C., Qin, H., Vemuri, B.: A novel FEM-based dynamic framework for subdivision surfaces. Comput. Aided Des. 32(8–9), 479–497 (2000)

    Article  Google Scholar 

  61. Maurer, T., Guigonis, D., Maslov, I., Pesenti, B., Tsaregorodtsev, A., West, D., Medioni, G.: Performance of Geometrix ActiveID 3D face recognition engine on the FRGC data. In: IEEE Workshop on Face Recognition Grand Challenge Experiments (2005)

    Google Scholar 

  62. Metaxas, D., Kakadiaris, I.: Elastically adaptive deformable models. IEEE Trans. Pattern Anal. Mach. Intell. 24(10), 1310–1321 (2002)

    Article  Google Scholar 

  63. Mian, A.: http://www.csse.uwa.edu.au/~ajmal/code.html. Accessed on 6th July 2011

  64. Mian, A., Bennamoun, M., Owens, R.: An efficient multimodal 2D–3D hybrid approach to automatic face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1927–1943 (2007)

    Article  Google Scholar 

  65. Mian, A., Bennamoun, M., Owens, R.: Keypoint detection and local feature matching for textured 3D face recognition. Int. J. Comput. Vis. 79(1), 1–12 (2008)

    Article  Google Scholar 

  66. Mian, A., Bennamoun, M., Owens, R.: On the repeatability and quality of keypoints for local feature-based 3D object retrieval from cluttered scenes. Int. J. Comput. Vis. (2010)

    Google Scholar 

  67. Medioni, G., Waupotitsch, R.: Face recognition and modeling in 3D. In: IEEE Int. Workshop Analysis and Modeling of Faces and Gestures, pp. 232–233 (2003)

    Google Scholar 

  68. MeshLab.: Visual computing Lab. ISTI-CNR. http://meshlab.sourceforge.net/. Cited 14 June, 2010

  69. Padia, C., Pears, N.E.: A review and characterization of ICP-based symmetry plane localisation in 3D face data. Technical Report YCS 463, Department of Computer Science, University of York (2011)

    Google Scholar 

  70. Pan, G., Han, S., Wu, Z., Wang, Y.: 3D face recognition using mapped depth images. In: IEEE Workshop on Face Recognition Grand Challenge Experiments (2005)

    Google Scholar 

  71. Passalis, G., Kakadiaris, I.A., Theoharis, T., Toderici, G., Murtuza, N.: Evaluation of the UR3D algorithm using the FRGC v2 data set. In: Proc. IEEE Workshop on Face Recognition Grand Challenge Experiments (2005)

    Google Scholar 

  72. Pears, N.E., Heseltine, T., Romero, M.: From 3D point clouds to pose normalised depth maps. Int. J. Comput. Vis. 89(2), 152–176 (2010). Special Issue on 3D Object Retrieval

    Article  Google Scholar 

  73. Phillips, P., Flynn, P., Scruggs, T., Bowyer, K., Chang, J., Hoffman, K., Marques, J., Min, J., Worek, W.: Overview of the face recognition grand challenge. In: IEEE CVPR, pp. 947–954 (2005)

    Google Scholar 

  74. Piegl, L., Tiller, W.: The NURBS Book. Monographs in Visual Communication, 2nd edn. (1997)

    Book  Google Scholar 

  75. Portilla, J., Simoncelli, E.: A parametric texture model based on joint statistic of complex wavelet coefficients. Int. J. Comput. Vis. 40, 49–71 (2000)

    Article  MATH  Google Scholar 

  76. Queirolo, C.Q., Silva, L., Bellon, O.R.P., Segundo, M.P.: 3D face recognition using simulated annealing and the surface interpenetration measure. IEEE Trans. Pattern Anal. Mach. Intell. 32(2), 206–219 (2010)

    Article  Google Scholar 

  77. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Int. Conf. on 3D Digital Imaging and Modeling, pp. 145–152 (2001)

    Chapter  Google Scholar 

  78. Samir, C., Srivastava, A., Daoudi, M.: Three-dimensional face recognition using shapes of facial curves. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1858–1863 (2006)

    Article  Google Scholar 

  79. Savran, A., et al.: In: Bosphorus Database for 3D Face Analysis. Biometrics and Identity Management. Lecture Notes in Computer Science, vol. 5372, pp. 47–56 (2008)

    Chapter  Google Scholar 

  80. Sethian, J.: A review of the theory, algorithms, and applications of level set method for propagating surfaces. In: Acta Numer., pp. 309–395 (1996)

    Google Scholar 

  81. Silva, L., Bellon, O.R.P., Boyer, K.L.: Precision range image registration using a robust surface interpenetration measure and enhanced genetic algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 762–776 (2005)

    Article  Google Scholar 

  82. Sirovich, L., Kirby, M.: Low-dimensional procedure for the characterization of human faces. J. Opt. Soc. Am. A 4, 519–524 (1987)

    Article  Google Scholar 

  83. Spira, A., Kimmel, R.: An ecient solution to the eikonal equation on parametric manifolds. Interfaces Free Bound. 6(3), 315–327 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  84. Swiss Ranger. Mesa Imaging. http://www.mesa-imaging.ch/. Cited 10 June, 2010

  85. Tanaka, H., Ikeda, M., Chiaki, H.: Curvature-based face surface recognition using spherical correlation principal directions for curved object recognition. In: Int. Conference on Automated Face and Gesture Recognition, pp. 372–377 (1998)

    Google Scholar 

  86. Texas 3D face recognition database. http://live.ece.utexas.edu/research/texas3dfr/. Accessed 5th July 2011

  87. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3, 71–86 (1991)

    Article  Google Scholar 

  88. Viola, P., Jones, M.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)

    Article  Google Scholar 

  89. Xianfang, S., Rosin, P., Martin, R., Langbein, F.: Noise analysis and synthesis for 3D laser depth scanners. Graph. Models 71(2), 34–48 (2009)

    Article  Google Scholar 

  90. Xu, C., Wang, Y., Tan, T., Quan, L.: Automatic 3D face recognition combining global geometric features with local shape variation information. In: Proc. IEEE Int. Conf. Pattern Recognition, pp. 308–313 (2004)

    Google Scholar 

  91. Yan, P., Bowyer, K.W.: A fast algorithm for ICP-based 3D shape biometrics. Comput. Vis. Image Underst. 107(3), 195–202 (2007)

    Article  Google Scholar 

  92. Yang, M., Kriegman, D., Ahuja, N.: Detecting faces in images: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 24(1), 34–58 (2002)

    Article  Google Scholar 

  93. Yin, L., Wei, X., Sun, Y., Wang, J., Rosato, M.J.: A 3D facial expression database for facial behavior research. In: 7th Int. Conf. on Automatic Face and Gesture Recognition (FGR06), pp. 211–216 (2006)

    Google Scholar 

  94. Yu, H., Yang, J.: A direct LDA algorithm for high-dimensional data—with application to face recognition. Pattern Recognit. 34(10), 2067–2069 (2001)

    Article  MATH  Google Scholar 

  95. Zhang, L., Snavely, N., Curless, B., Seitz, S.: Spacetime faces: high resolution capture for modeling and animation. ACM Trans. Graph. 23(3), 548–558 (2004)

    Article  Google Scholar 

  96. Zhao, W., Chellappa, R., Phillips, P., Rosenfeld, A.: Face recognition: a literature survey. In: ACM Computing Survey, vol. 35, pp. 399–458 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajmal Mian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Mian, A., Pears, N. (2012). 3D Face Recognition. In: Pears, N., Liu, Y., Bunting, P. (eds) 3D Imaging, Analysis and Applications. Springer, London. https://doi.org/10.1007/978-1-4471-4063-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4063-4_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4062-7

  • Online ISBN: 978-1-4471-4063-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics