Skip to main content

Centrality Robustness and Link Prediction in Complex Social Networks

  • Chapter
  • First Online:
  • 1898 Accesses

Abstract

This chapter addresses two important issues in social network analysis that involve uncertainty. Firstly, we present an analysis on the robustness of centrality measures that extends the work presented in Borgatti et al. using three types of complex network structures and one real social network. Secondly, we present a method to predict edges in dynamic social networks. Our experimental results indicate that the robustness of the centrality measures applied to more realistic social networks follows a predictable pattern and that the use of temporal statistics could improve the accuracy achieved on edge prediction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    It should be noted that this function is dependent on the size of network that has to be generated.

  2. 2.

    Practical memory limit for holding adjacency matrices in our computing system is less than 25,000 nodes.

  3. 3.

    This approach was used in [16].

  4. 4.

    t(e) is the time-stamp when edge e was created, and t(u) the time-stamp when u joined the network.

  5. 5.

    This function was found using standard linear least squares method, and the pearson correlation as fitness function between power fit and exponential fit.

References

  1. Albert, R., Barabási, A.L.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albert, R., Barabási, A.L., Jeong, H.: Mean-field theory for scale-free random networks. Physica A 272, 173–187 (1999). doi:10. 1016/S0378-4371(99)00291-5

    Article  Google Scholar 

  3. Barabási, A.L., Bonabeau, E.: Scale-free networks. Sci. Am. 288(5), 50–59 (2003)

    Article  Google Scholar 

  4. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006). doi:10.1016/j.physrep.2005.10.009

    Article  MathSciNet  Google Scholar 

  5. Borgatti, S.P., Carley, K.M., Krackhardt, D.: On the robustness of centrality measures under conditions of imperfect data. Soc. Netw. 28(2), 124–136 (2005). doi:10.1016/j.socnet.2005.05.001

    Article  Google Scholar 

  6. Clauset, A., Moore, C., Newman, M.E.J.: Hierarchical structure and the prediction of missing links in networks. Nature 453, 98–101 (2008). doi:10.1038/nature06830

    Article  Google Scholar 

  7. Geng, X., Wang, Y.: Degree correlations in citation networks model with aging. Europhys. Lett. 88, 38002 (2009). doi:10.1209/0295-5075/ 88/38002

    Article  Google Scholar 

  8. Gloor, P.A., Niepel, S., Li, Y.: Identifying potential suspects by temporal link analysis. Technical Reports, MIT CCS (2006)

    Google Scholar 

  9. Gloor, P.A., Zhao, Y.: Tecflow – a temporal communication flow visualizer for social network analysis. In: ACM CSCW Workshop on Social Networks, ACM CSCW Conference (2005)

    Google Scholar 

  10. Goldenberg, A., Zheng, A.X., Fienberg, S.E., Airoldi, E.M.: A survey of statistical network models. Found. Trends Mach. Learn. 2(2), 1–117 (2009)

    Google Scholar 

  11. Kashima, H., Abe, N.: A parameterized probabilistic model of network evolution for supervised link prediction. In: Proceedings of the 6th International Conference on Data Mining, pp. 340–349. IEEE Computer Society (2006). doi:10.1109/ICDM.2006.8

    Google Scholar 

  12. Klemm, K., Eguiluz, V.M.: Highly clustered scale-free networks. Phys. Rev. E 65(3), 036123 (2002). doi:10.1103/PhysRevE.65.03612

    Article  Google Scholar 

  13. Krebs, V.E.: Uncloaking terrorist networks. First Monday 7(4) (2002)

    Google Scholar 

  14. Krebs, V., Holley, J.: Building smart communities through network weaving

    Google Scholar 

  15. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the 11th ACM SIGKDD international conference on knowledge discovery in data mining, pp. 177–187 (2005). doi:10.1145/ 1081870.1081893

    Google Scholar 

  16. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 58(7), 1019–1031 (2007). doi:10.1002/asi.v58:7

    Article  Google Scholar 

  17. Milgram, S.: The small world problem. Psychol. Today 2, 60–67 (1967)

    Google Scholar 

  18. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ortiz-Arroyo, D., Hussain, D.M.A.: An information theory approach to identify sets of key players. In: Intelligence and Security Informatics, vol. 5376/2008, pp. 15–26. Springer (2008). doi:10.1007/ 978-3-540-89900-6{ _}5

    Google Scholar 

  20. Scott, J.: Social Network Analysis: A Handbook, 2nd edn. SAGE, London (2000)

    Google Scholar 

  21. Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001). doi:10.1038/35065725

    Article  Google Scholar 

  22. Tang, J., Musolesi, M., Mascolo, C., Latora, V.: Temporal distance metrics for social network analysis. In: WOSN ’09: Proceedings of the 2nd ACM Workshop on Online Social Networks, pp. 31–36. ACM, New York (2009). doi:10.1145/1592665.1592674

    Google Scholar 

  23. Watts, D.J., Strogatz, S.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998). doi:10.1038/30918

    Article  Google Scholar 

  24. Xiang, E.W.: A survey on link prediction models for social network data. Technical Reports, The Hong Kong University of Science and Technology (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Søren Atmakuri Davidsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Davidsen, S.A., Ortiz-Arroyo, D. (2012). Centrality Robustness and Link Prediction in Complex Social Networks. In: Abraham, A., Hassanien, AE. (eds) Computational Social Networks. Springer, London. https://doi.org/10.1007/978-1-4471-4048-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4048-1_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4047-4

  • Online ISBN: 978-1-4471-4048-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics