Advertisement

Real Emotions for Simulated Social Networks

  • Pietro Cipresso
  • Luigi Sellitti
  • Nadia El Assawy
  • Federica Galli
  • Anna Balgera
  • Jean Marie Dembele
  • Marco Villamira
  • Giuseppe Riva
Chapter

Abstract

In this study we analyzed how to consider real emotions in complex networks. The main idea is to understand subjects’ behaviors in specific situations, such as social network sites navigation, to use these information in modeling complex phenomena. We suggest the use of agent-based models, since this is a flexible and powerful tool in complex systems modeling; moreover such models are able to include behavioral cues for heterogeneous agents: this is an important property above all considering the study of networked agents representing subjects and relationships.

To have a precise idea about the subjects’ behavior during social network site navigation, we used wearable biosensors in an experiment with 28 subjects to assess cardiorespiratory aspects (using a belt respiration sensor and a electrocardiogram), and facial cues (using two facial electromyography sensors). Subjects showed an optimal experience during navigation and this information gave us the chance to discuss an example of information diffusion using both a mathematical model and an agent-based model.

Keywords

Affective State Artificial Agent Respiratory Sinus Arrhythmia Emotional Valence Physiological Arousal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliography

  1. 1.
    Barbieri, R., Triedman, J.K., Saul, J.P.: Heart rate control and mechanical cardiopulmonary coupling to assess central volume: a systems analysis. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 283, R1210–R1220 (2002)Google Scholar
  2. 2.
    Barthélémy, M.: Spatial networks. Phys. Rep. 499, 1–101 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Barthélémy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A.: Velocity and hierarchical spread of epidemic outbreaks in scale-free networks. Phys. Rev. Lett. 92, 178701 (2004)CrossRefGoogle Scholar
  4. 4.
    Blumenthal, T.D., Cuthbert, A.B.N., Filion, B.D.L., Hackley, S., Lipp, D.O.V., Van Boxtel, F.A.: Committee report: guidelines for human startle eyeblink electromyographic studies. Psychophysiology 42, 1–15 (2005)CrossRefGoogle Scholar
  5. 5.
    Boguna, M., Pastor-Satorras, R., Vespignani, A.: Absence of epidemic threshold in scale-free networks with degree correlations. Phys. Rev. Lett. 90, 028701 (2003)CrossRefGoogle Scholar
  6. 6.
    Burghouts G.J., op den Akker, R., Heylen, D., Poel, M., Nijholt A.: An action selection architecture for an emotional agent. In Russell and Haller (eds.) Recent Advances in Artificial Intelligence, Proceedings of FLAIRS 16, pp 293–297. Menlo Park: AAAI Press (2003)Google Scholar
  7. 7.
    Ciarrochi, J., Mayer, J.D.: Applying Emotional Intelligence. Psychology Press, New York (2007)Google Scholar
  8. 8.
    Cipresso, P., Mauri, M., Balgera, A., Romanò, E., Villamira, M.: Synchronization of a biofeedback system with an eye tracker through an audiovisual stimulus marker [Abstract]. Appl. Psychophysiol. Biofeedback, Springer 35(4), 331 (2010)Google Scholar
  9. 9.
    Cipresso, P., Villamira, M.: Physiological correlates for an agent-based computational model [Abstract]. Appl. Psychophysiol. Biofeedback, Springer 35(4), 331 (2010)Google Scholar
  10. 10.
    Cipresso, P.: Modeling Emotions at the Edge of Chaos. From Psychophysiology to Networked Emotions. VDM Verlag, Saarbrücken (2010). ISBN 978-3-639-30169-4Google Scholar
  11. 11.
    Cipresso, P., Dembele, J.M., Villamira, M.A.: An emotional perspective for agent-based computational economics. In: Vallverd\( \grave{\rm u} \), J., Casacuberta, D. (eds.) Handbook of Research on Synthetic Emotions and Sociable Robotics: New Applications in Affective Computing and Artificial Intelligence. IGI Global, Hershey (2009). ISBN 978–1–60566–354–8Google Scholar
  12. 12.
    Cipresso, P., Villamira, M.A.: Human behaviour and organisational framework: a multi-agent approach to shape information management systems. In: Proceeding of European Conference on Information Management and Evaluation, Montpellier, France. Academic Conferences, Reading (2007). ISBN: Print 978–1–905305–54–4, CD 978–1–905305–55–1Google Scholar
  13. 13.
    De Manzano, O., Theorell, T., Harmat, L., Ullén, F.: The psychophysiology of flow during piano playing. Emotion 10(3), 301–311 (2010)CrossRefGoogle Scholar
  14. 14.
    DiMicco, J., Millen, D.R.: Identity management: multiple presentations of self in facebook In: Proceedings of the 2007 International ACM Conference on Supporting Group Work, FL, pp. 383–386 (2007)Google Scholar
  15. 15.
    Elman, J.L.: Finding structure in time. Cogn. Sci. 14, 179–211 (1990)CrossRefGoogle Scholar
  16. 16.
    Gilbert, N.: Agent-Based Models. Quantitative Applications in the Social Sciences. SAGE Publications, London (2008)Google Scholar
  17. 17.
    Lampe, C., Ellison, N., Steinfield, C.: A face(book) in the crowd: social searching vs. social browsing. In: Proceedings of the 2006 20th Anniversary Conference on Computer Supported Cooperative Work, pp. 167–170. ACM Press, New York (2006)CrossRefGoogle Scholar
  18. 18.
    Lampe, C., Ellison, N., Steinfield, C.: The benefits of facebook “friends”: social capital and college students’ use of online social network sites. J. Comput.-Mediat. Commun. 12(4), 1143–1168 (2007)CrossRefGoogle Scholar
  19. 19.
    Lang, P.J.: The emotion probe. Studies of motivation and attention. Am. Psychol. 50(5), 372–385 (1995)CrossRefGoogle Scholar
  20. 20.
    Lazarus, R.S.: Psychological Stress and Coping Process. McGraw-Hill, New York (1966)Google Scholar
  21. 21.
    LeBaron, B.: Agent based computational finance: suggested readings and early research. J. Econ. Dyn. Control. 24, 679–702 (2006)CrossRefGoogle Scholar
  22. 22.
    LeDoux, J.: Fear and the brain: where have we been, and where are we going? Biol. Psychiatry 44, 12 (1998)CrossRefGoogle Scholar
  23. 23.
    Leijonhufvud, A.: Agent-based macro. In: Tesfatsion, L., Judd, K.L. (eds.) Handbook of Computational Economics, vol. 2, pp. 1625–1637. North-Holland, Amsterdam (2006)CrossRefGoogle Scholar
  24. 24.
    Lewis, M., Haviland-Jones, J.M., Feldman Barrett, L. (eds.): Handbook of Emotions, 3rd edn. Psychology Press, New York (2008)Google Scholar
  25. 25.
    Magagnin, V., Mauri, M., Cipresso, P., Mainardi, L., Brown, E.N., Cerutti, S., Villamira, M., Barbieri, R.: Heart rate variability and respiratory sinus arrhythmia assessment of affective states by bivariate autoregressive spectral analysis. Comput. Cardiol. 37, 145–148 (2010)Google Scholar
  26. 26.
    Mauri, M., Magagnin, V., Cipresso, P., Mainardi, L., Brown, E.N., Cerutti, S., Villamira, M.A., Barbieri, R.: Psychophysiological signals associated with affective states. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 3563–3566 (2010)Google Scholar
  27. 27.
    Miller, J.H., Page, S.E.: Complex Adaptive Systems. Princeton University Press, Princeton (2007)MATHGoogle Scholar
  28. 28.
    Nolan, R.P.: Heart rate variability biofeedback as a behavioral neurocardiac intervention to enhance vagal heart rate control. Am. Heart J. 149(6), 1137 (2005)CrossRefGoogle Scholar
  29. 29.
    Orr, E.S., Sisic, M., Ross, C., Simmering, M.G., Arseneault, J.M., Orr, R.R.: The influence of shyness on the use of facebook in an undergraduate sample. Cyberpsychol. Behav. 12(3), 337–340 (2009). doi: 10.1089/cpb.2008.0214 CrossRefGoogle Scholar
  30. 30.
    Park, N., Kee, K.F., Valenzuela, S.: Being immersed in social networking environment: facebook groups, uses and gratifications, and social outcomes. Cyberpsychol. Behav. 12(6), 729–733 (2009). doi: 10.1089/cpb.2009.0003 CrossRefGoogle Scholar
  31. 31.
    Picard, R.: Affective Computing. MIT Press, Cambridge (1997)Google Scholar
  32. 32.
    Power, M., Dalgleish, T.: Cognition and Emotion. From Order to Disorder. Psychology Press, New York (2008)Google Scholar
  33. 33.
    Riva, G.: Social Networks. Il Mulino, Bologna (2010)Google Scholar
  34. 34.
    Roberts, K.L., Hall, D.A.: Examining a supramodal network for conflict processing: a systematic review and novel functional magnetic resonance imaging data for related visual and auditory stroop tasks. J. Cogn. Neurosci. 20(6), 1063–1078 (2008)CrossRefGoogle Scholar
  35. 35.
    Sas, C., Dix, A., Hart, J., Su, R.: Emotional experience on facebook site. In: Proceedings of the 27th International Conference Extended Abstracts on Human Factors in Computing Systems, pp. 4345–4350. ACM Press, New York (2009)CrossRefGoogle Scholar
  36. 36.
    Simon, H.: Models of Bounded Rationality, vol. 3. MIT Press, Cambridge (1997)Google Scholar
  37. 37.
    Stroop, J.R.: Studies of interference in serial verbal reactions. J. Exp. Psychol. 18, 643–662 (1935)CrossRefGoogle Scholar
  38. 38.
    Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology: Standard of measurement, physiological interpretation and clinical use. Circulation 93, 1043–1065 (1996)CrossRefGoogle Scholar
  39. 39.
    Tassinary, L.G., Cacioppo, J.T., Wanman, E.J.: The skeletomotor system: surface electromyography. In: Cacioppo, J.T., Tassinary, L.G., Berntson, G.G. (eds.) Handbook of Psychophysiology, 3rd edn, pp. 267–299. Cambridge University Press. Pages, New York (2007)CrossRefGoogle Scholar
  40. 40.
    Terna, P., Boero, R., Morini, M., Sonnessa, M.: Modelli per la complessità. La simulazione ad agenti in economia. Il Mulino, Bologna (2006)Google Scholar
  41. 41.
    Tesfatsion, L.: Agent based computational economics: a constructive approach to economic theory. In: Tesfatsion, L., Judd, K.L. (eds.) Handbook of Computational Economics, vol. 2, pp. 831–880. North-Holland, Amsterdam (2006)CrossRefGoogle Scholar
  42. 42.
    Villamira, M., Cipresso, P.: Bio-inspired ICT for evolutionary emotional intelligence. In: Serra, R., Villani, M., Poli, I. (eds.) Artificial Life and Evolutionary Computation, pp. 143–154. World Scientific Pub Co Inc, Singapore/Hackensack (2010)CrossRefGoogle Scholar
  43. 43.
    Wise, K., Alhabash, S., Park, H.: Cyberpsychology, behavior, and social networking 13(5), 555–562 (2010). doi: 10.1089/cyber.2009.0365 CrossRefGoogle Scholar
  44. Mauri, M., Cipresso, P., Balgera, A., Villamira, M., Riva, G.: Cyberpsychology, behavior, and social networking 14(12), 723–731 (2011). doi: 10.1089/cyber.cyber.2010.0377 CrossRefGoogle Scholar
  45. Cipresso, P., Serino, S., Villani, D., Repetto, C., Sellitti, L., Albani, G., Mauro, A., Gaggioli, A., Riva, G.: Is your phone so smart to affect your states? An exploratory study based on psychophysiological measures. Neurocomputing 84, 23–30 (2012). doi: dx.doi.org/10.1016/j.neucom.2011.12.027 Google Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  • Pietro Cipresso
    • 1
  • Luigi Sellitti
    • 2
  • Nadia El Assawy
    • 2
  • Federica Galli
    • 2
  • Anna Balgera
    • 3
  • Jean Marie Dembele
    • 4
  • Marco Villamira
    • 3
  • Giuseppe Riva
    • 5
  1. 1.Applied Technology for Neuro-Psychology LabIRCCS Istituto Auxologico ItalianoMilanItaly
  2. 2.Division of Neurology and NeurorehabilitationSan Giuseppe Hospital, IRCCS Istituto Auxologico ItalianoPiancavallo (VB)Italy
  3. 3.IULM UniversityMilanItaly
  4. 4.Université Cheikh Anta DiopDakarRepublic of Senegal
  5. 5.Psychology DepartmentCatholic University of Milan, ItalyMilanItaly

Personalised recommendations