Skip to main content

Design of Experiments for Eliciting Customer Preferences

  • Chapter
  • First Online:
Decision-Based Design

Abstract

In this chapter, the survey methods needed to elicit the customer preference data to estimate a DCA or OL model, are introduced. The survey methods are based upon established Design of Experiments methodologies, but adapted for the specific needs of stated preference experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Customer-desired product attributes

α:

Pairwise correlation coefficient for multinomial covariance matrix

β :

Choice model coefficient in customer’s utility function

B :

Number of configurations given to a single respondent

D n :

Derivative of π i

det:

Matrix determinant

E :

Engineering Attributes

ε in :

Random unobservable part of the utility of configuration i for respondent n

f(x):

Extended experiment design point, including intercept/cutpoints, interaction, and higher ordered terms than x

f :

PDF of the logistic distribution

F :

CDF of the logistic distribution

F :

Extended design matrix

G :

Candidate set of design points

GLS:

Generalized least squares (Regression)

i :

A configuration

inv:

Matrix inverse

k, k p :

Ordered logit cutpoints

M :

Number of configurations in a complete experimental design

M :

Fisher information matrix of an experimental design

n :

A block or respondent

OLS:

Ordinary least squares (Regression)

P :

Number of ordered ratings categories

P :

Working correlation matrix

\( \pi_{inp} \) :

Probability of rating p for respondent n and configuration i

R :

Ratings

ρ :

Pairwise ratings correlation coefficient

ρ 2 :

Model fit statistic for ordered logit/probit model

σ u :

Variance at the respondent level

σ ε :

Variance at the observation level

S :

Human attributes

T :

Number of tries conducted in the algorithm

u in :

Utility of configuration i for respondent n in the ordered logit/probit equation

V :

Asymptotic variance-covariance matrix

x :

Design point for product and human factors. A sub-set of f(x)

X :

Extended design matrix, composed of f(x)

References

  1. Atkinson AC, Donev AN (1992) Optimum experimental designs. Oxford University Press, Oxford

    MATH  Google Scholar 

  2. Box G, Bisgaard S, Fung C (1988) An explanation and critique of taguchi’’ contributions to quality engineering. Qual Reliab Eng Intern 4(2):123–131

    Article  Google Scholar 

  3. Box GEP, Hunter JS, Hunter WG (2005) Statistics for experimenters: design, innovation, and discovery. Wiley, New York

    MATH  Google Scholar 

  4. Cox EP III (1980) The optimal number of response alternatives for a scale: a review. J. Mark. Res. 17(4):407–422

    Article  Google Scholar 

  5. Fisher RA (1935) The design of experiments, 1st edn. Oliver & Boyd, Oxford

    Google Scholar 

  6. Goos P (2002) The optimal design of blocked and split-plot experiments. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  7. Goos P, Vandebroek M (2004) Outperforming completely randomized designs. J Qual Technol 36(1):12–26

    Google Scholar 

  8. Green PE, Krieger AM, Agarwal MK (1991) Adaptive conjoint analysis: some caveats and suggestions. J. Mark. Res. 28(2):215–222

    Article  Google Scholar 

  9. Green PE, Rao VR (1970) Rating scales and information recovery. How many scales and response categories to use? J Mark 34(3):33–39

    Article  Google Scholar 

  10. Hensher DA, Rose JM, Greene WH (2005) Applied choice analysis: a primer. Cambridge Univ Press, Cambridge

    Book  MATH  Google Scholar 

  11. Hines R (1997) Analysis of clustered polytomous data using generalized estimating equations and working covariance structures. Biometrics 53(4):1552–1556

    Article  MATH  Google Scholar 

  12. Hines R (1998) Comparison of two covariance structures in the analysis of clustered polytomous data using generalized estimating equations. Biometrics 54(1):312–316

    Article  MATH  Google Scholar 

  13. Hoyle C, Chen W, Ankenman B, Wang N (2009) Optimal experimental design of human appraisals for modeling consumer preferences in engineering design. J. Mech. Des. 131(7):98–107

    Article  Google Scholar 

  14. Johnson VE, Albert JH (1999) Ordinal data modeling. Springer, New York

    MATH  Google Scholar 

  15. Kessels R, Goos P, Vandebroek M (2006) A comparison of criteria to design efficient choice experiments. J. Mark. Res. 43(3):409–419

    Article  Google Scholar 

  16. Kessels R, Goos P, Vandebroek M (2008) Optimal designs for rating-based conjoint experiments. Comput. Stat. Data Anal. 52(5):2369–2387

    Article  MathSciNet  MATH  Google Scholar 

  17. Kessels R, Jones B, Goos P, Vandebroek M (2009) An efficient algorithm for constructing Bayesian optimal choice designs. J Bus Econ Stat 27(2):279–291

    Article  MathSciNet  Google Scholar 

  18. Kuhfeld WF, Tobias RD, Garratt M (1994) Efficient experimental design with marketing research applications. J. Mark. Res. 31(4):545–557

    Article  Google Scholar 

  19. Liang K, Zeger SL (1986) Longitudinal data analysis using generalized linear models. Biometrika 73(1):13–22

    Article  MathSciNet  MATH  Google Scholar 

  20. Louviere JJ (2006) What you don’t know might hurt you: some unresolved issues in the design and analysis of discrete choice experiments. Environ Resour Econ 34(1):173–188

    Article  Google Scholar 

  21. Louviere JJ, Hensher DA, Swait JD (2000) Stated choice methods: analysis and application. Cambridge University Press, New York

    Book  Google Scholar 

  22. Louviere JJ, Islam T, Wasi N, Street D, Burgess L (2008) Designing discrete choice experiments: do optimal designs come at a price? J Consum Res: An Interdiscip Q 35(2):360–375

    Google Scholar 

  23. Mason RL, Gunst RF, Hess JL (2003) Statistical design and analysis of experiments: with applications to engineering and science. Wiley Series in Probability and Statistics, New York

    MATH  Google Scholar 

  24. McCullagh P (1980) Regression models for ordinal data. J. Roy. Stat. Soc.: Ser. B (Methodol.) 42(2):109–142

    MathSciNet  MATH  Google Scholar 

  25. McKelvey RD, Zavoina W (1975) A statistical model for the analysis of ordinal level dependent variables. J Math Sociol 4(1):103–120

    Article  MathSciNet  MATH  Google Scholar 

  26. Montgomery DC (2005) Design and analysis of experiments. John Wiley and Sons, Inc., New York

    MATH  Google Scholar 

  27. Myers RH, Montgomery DC (2002) Response surface methodology: process and product in optimization using designed experiments. John Wiley & Sons, Inc., New York, NY

    MATH  Google Scholar 

  28. Phadke MS (1995) Quality engineering using robust design. Prentice Hall, Upper Saddle River

    Google Scholar 

  29. Sandor Z, Wedel M (2001) Designing conjoint choice experiments using managers prior beliefs. J. Mark. Res. 38(4):430–444

    Article  Google Scholar 

  30. Society of Automotive Engineers Society of Automotive Engineers (2002) Surface vehicle recommended practice-motor vehicle dimensions. SAE J1100. Warrendale, Pennsylvania

    Google Scholar 

  31. Steckel JH, DeSarbo WS, Mahajan V (1991) On the creation of acceptable conjoint analysis experimental designs. Decis Sci 22(2):435–442

    Article  Google Scholar 

  32. Stevens SS (1986) Psychophysics: introduction to its perceptual, neural, and social prospects. Transaction Publishers, New Brunswick

    Google Scholar 

  33. Street DJ, Burgess L (2007) The construction of optimal stated choice experiments: theory and methods. Wiley-Interscience, Hoboken

    Book  MATH  Google Scholar 

  34. Taguchi G (1988) Introduction to quality engineering: designing quality into products and processes. Asian Productivity Organization, Tokyo

    Google Scholar 

  35. Tamhane AC, Dunlop DD (2000) Statistics and data analysis: from elementary to intermediate. Prentice Hall, Upper Saddle River

    Google Scholar 

  36. Train KE (2003) Discrete choice methods with simulation. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  37. Wang N, Kiridena V, Gomez-Levi G, Wan J (2006) Design and verification of a new computer controlled seating buck. Paper presented at the Proceedings of the 2006 ASME IDETC/CIE, Philadelphia, Pennsylvania, September 10−13

    Google Scholar 

  38. Williamson JM, Kim K, Lipsitz SR (1995) Analyzing bivariate ordinal data using a global odds ratio. J Am Stat Assoc 90(432):1432–1437

    Article  MathSciNet  MATH  Google Scholar 

  39. Yu J, Goos P, Vandebroek M (2009) Efficient conjoint choice designs in the presence of respondent heterogeneity. Marke Sci 28(1):122–135

    Article  Google Scholar 

  40. Zorn CJW (2001) Generalized estimating equation models for correlated data: a review with applications. Am J Political Sci 45(2):470–490

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen .

Appendices

Appendix A: Simplified Method of Expressing M

This appendix provides a method for expressing the information matrix, M, and estimating the prediction variance of a given extended design point, f(x), for use in the optimization algorithm. The ordinal data GLM information matrix of Eq. (6.9) can be written in analogous fashion to the GLS formulation of Eq. (6.7) [14]. An H n matrix is defined as a matrix of derivatives of the logistic CDF as \( {\mathbf{H}}_{n} = {\text{diag}}\left( {f_{n1} ,f_{n2} , \ldots f_{{n\left( {P - 1} \right)}} } \right) \). The extended design point f(x in ) for a given respondent and given configuration is defined as:

$$ {\mathbf{f}}\left( {{\mathbf{x}}_{in} } \right) = \left[ {\begin{array}{*{20}c} 1 & 0 & \cdots & 0 & { - {\mathbf{x}}_{in} } \\ 0 & 1 & \cdots & 0 & { - {\mathbf{x}}_{in} } \\ \vdots & \vdots & \ddots & \vdots & { - {\mathbf{x}}_{in} } \\ 0 & 0 & 0 & 1 & { - {\mathbf{x}}_{in} } \\ \end{array} } \right]. $$
(A.1)

A C n matrix defined as:

$$ {\mathbf{C}}_{n} = \left[ {\begin{array}{*{20}c} 1 & 0 & \cdots & 0 \\ { - 1} & 1 & \cdots & 0 \\ 0 & { - 1} & \cdots & 0 \\ \vdots & \vdots & \ddots & 1 \\ 0 & 0 & \cdots & { - 1} \\ \end{array} } \right]. $$
(A.2)

With C n , H n and f(x) defined, the information matrix can be written as [14]:

$$ {\mathbf{M}} = \sum\limits_{n = 1}^{N} {{\mathbf{F^{\prime}}}_{n} {\mathbf{W}}_{n}^{ - 1} {\mathbf{F}}_{n} } $$
(A.3)

where \( {\mathbf{W}}_{n}^{ - 1} = {\mathbf{H}}_{n} {\mathbf{C^{\prime}}}_{n} {\mathbf{V}}_{n}^{ - 1} {\mathbf{C}}_{n} {\mathbf{H}}_{n} \), and F is the extended design matrix composed of the f(x).

Appendix B: Example of Experimental Configuration Blocks

Table B.1 Example of three experimental configuration blocks

 

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Chen, W., Hoyle, C., Wassenaar, H.J. (2013). Design of Experiments for Eliciting Customer Preferences. In: Decision-Based Design. Springer, London. https://doi.org/10.1007/978-1-4471-4036-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4036-8_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4035-1

  • Online ISBN: 978-1-4471-4036-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics