Nanoalloys pp 259-286 | Cite as

Computational Methods for Predicting the Structures of Nanoalloys

Part of the Engineering Materials book series (ENG.MAT.)


Determining the geometric structure and chemical ordering of alloy nanoparticles is a crucial step for understanding and tailoring their properties. Here we review the methods for exploring the energy landscape of nanoalloys in order to find the most stable structural motifs and chemical ordering patterns. These methods are known under the name of global optimization, and range from simulated annealing, to genetic algorithms and basin hopping algorithms. The thermodynamics of the melting transition and kinetic effects in the growth of gas-phase nanoalloys are also discussed. For all topics, specific examples are presented.


Global Optimization Potential Energy Surface Global Optimization Algorithm External Shell Density Functional Theory Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nanoalloys—from Theory to Applications, Faraday Discuss. 138 (2003)Google Scholar
  2. 2.
    Ferrando, R., Jellinek, J., Johnston, R.L.: Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108, 845 (2008)CrossRefGoogle Scholar
  3. 3.
    Ferrando, R., Fortunelli, A., Johnston, R.L.: Searching for the optimum structures of alloy nanoclusters. Phys. Chem. Chem. Phys. 10, 640 (2008)CrossRefGoogle Scholar
  4. 4.
    Johnston, R.L.: Evolving better nanoparticles: genetic algorithms for optimising cluster geometries. Dalton Trans. 22, 4193 (2003)Google Scholar
  5. 5.
    Marks, L.D.: Experimental studies of small-particle structures. Rep. Prog. Phys. 57, 603 (1994)CrossRefGoogle Scholar
  6. 6.
    Darby, S., Mortimer-Jones, T.V., Johnston, R.L., Roberts, C.: Theoretical study of Cu–Au nanoalloy clusters using a genetic algorithm. J. Chem. Phys. 116, 1536 (2002)CrossRefGoogle Scholar
  7. 7.
    Baletto, F., Mottet, C., Ferrando, R.: Growth of three-shell onionlike bimetallic nanoparticles. Phys. Rev. Lett. 90, 135504 (2003)CrossRefGoogle Scholar
  8. 8.
    Rossi, G., Rapallo, A., Mottet, C., Fortunelli, A., Baletto, F., Ferrando, R.: Magic polyicosahedral core-shell clusters. Phys. Rev. Lett. 93, 105503 (2004)CrossRefGoogle Scholar
  9. 9.
    Rapallo, A., Rossi, G., Ferrando, R., Fortunelli, A., Curley, B.C., Lloyd, L.D., Tarbuck, G.M., Johnston, R.L.: Global optimization of bimetallic cluster structures. I. size-mismatched Ag–Cu, Ag–Ni, and Au-Cu systems. J. Chem. Phys. 122, 194308 (2005)CrossRefGoogle Scholar
  10. 10.
    Rossi, G., Rapallo, A., Ferrando, R., Fortunelli, A., Curley, B.C., Lloyd, L.D., Johnston, R.L.: Global optimization of bimetallic cluster structures. II. size-matched Ag–Pd, Ag–Au, and Pd–Pt systems. J. Chem. Phys. 122, 194309 (2005)CrossRefGoogle Scholar
  11. 11.
    Ferrando, R., Fortunelli, A., Rossi, G.: Quantum effects on the structure of pure and binary metallic nanoclusters. Phys. Rev. B 72, 085449 (2005)CrossRefGoogle Scholar
  12. 12.
    Mariscal, M.M., Dassie, S.A., Leiva, E.P.M.: Collision as a way of forming bimetallic nanoclusters of various structures and chemical compositions. J. Chem. Phys. 123, 184505 (2005)CrossRefGoogle Scholar
  13. 13.
    Barcaro, G., Fortunelli, A., Rossi, G., Nita, F., Ferrando, R.: Electronic and structural shell closure in AgCu and AuCu nanoclusters. J. Phys. Chem. B 110, 23197 (2006)CrossRefGoogle Scholar
  14. 14.
    Paz-Borbón, L.O., Johnston, R.L., Barcaro, G., Fortunelli, A.: A mixed structural motif in 34-atom Pd–Pt clusters. J. Phys. Chem. C 111, 2936 (2007)CrossRefGoogle Scholar
  15. 15.
    Paz-Borbón, L-O., Johnston, R.L., Barcaro, G., Fortunelli, A.: Structural motifs, mixing, and segregation effects in 38-atom binary clusters. J. Chem. Phys. 128, 134517 (2008)CrossRefGoogle Scholar
  16. 16.
    Toai, T.J., Rossi, G., Ferrando, R.: Global optimisation and growth simulation of AuCu clusters. Faraday Discuss. 138, 49 (2008)CrossRefGoogle Scholar
  17. 17.
    Calvo, F., Cottancin, E., Broyer, M.: Segregation, core alloying, and shape transitions in bimetallic nanoclusters: Monte Carlo simulations. Phys. Rev. B 77, 121406 (2008)CrossRefGoogle Scholar
  18. 18.
    Tran, D.T., Johnston, R.L.: Theoretical study of Cu(38-n)Au(n) clusters using a combined empirical potential-density functional approach. Phys. Chem. Chem. Phys. 11, 10340 (2009)CrossRefGoogle Scholar
  19. 19.
    Parsina, I., Baletto, F.: Tailoring the Structural Motif of Ag–Co Nanoalloys: Core/Shell versus Janus-like. J. Phys. Chem. C 114, 1504 (2010)CrossRefGoogle Scholar
  20. 20.
    Bochicchio, D., Ferrando, R.: Size-Dependent Transition to High-Symmetry Chiral Structures in AgCu, Ag–Co, Ag–Ni, and Au–Ni Nanoalloys. Nano Lett. 10, 4211 (2010)CrossRefGoogle Scholar
  21. 21.
    Wales, D.J.: Energy Landscapes. Cambridge University Press, Cambridge (2003)Google Scholar
  22. 22.
    Stillinger, F.H., Weber, T.A.: Hidden structure in liquids. Phys. Rev. A 25, 978 (1982)CrossRefGoogle Scholar
  23. 23.
    Stillinger, F.H., Weber, T.A.: Packing structures and transitions in liquids and solids. Science 225, 983 (1984)CrossRefGoogle Scholar
  24. 24.
    Stillinger, F.H.: Exponential multiplicity of inherent structures. Phys. Rev. E 59, 48 (1999)CrossRefGoogle Scholar
  25. 25.
    Rossi, G., Ferrando, R.: Searching for low-energy structures of nanoparticles: a comparison of different methods and algorithms. J. Phys. Cond. Mat. 9, 084208 (2009)CrossRefGoogle Scholar
  26. 26.
    Leary, R.H.: Global optimization on funneling landscapes. J. Global Opt. 18, 367 (2000)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Jellinek, J., Krissinel, E.B.: Theory of Atomic and Molecular Clusters. Springer, Berlin (1999)CrossRefGoogle Scholar
  28. 28.
    Doye, J.P.K., Miller, M.A., Wales, D.J.: The double-funnel energy landscape of the 38-atom Lennard-Jones cluster. J. Chem. Phys. 110, 6896 (1999)CrossRefGoogle Scholar
  29. 29.
    Wales, D.J., Scheraga, H.A.: Global optimization of clusters, crystals, and biomolecules. Science 285, 1368 (1999)CrossRefGoogle Scholar
  30. 30.
    Wales, D.J., Doye, J.P.K: Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101, 5111 (1997)CrossRefGoogle Scholar
  31. 31.
    Rossi, G., Ferrando, R.: Global optimization by excitable walkers. Chem. Phys. Lett. 423, 17 (2006)CrossRefGoogle Scholar
  32. 32.
    Deaven, D.M., Ho, K.M.: Molecular-geometry optimization by a genetic algorithm. Phys. Rev. Lett. 75, 288 (1995)CrossRefGoogle Scholar
  33. 33.
    Hartke, B.: Global geometry optimization of clusters using a genetic algorithm. J. Chem. Phys. 97, 9973 (1993)CrossRefGoogle Scholar
  34. 34.
    Hartke, B.: Global geometry optimization of clusters using a growth strategy optimized by a genetic algorithm. Chem. Phys. Lett. 240, 560 (1995)CrossRefGoogle Scholar
  35. 35.
    Garzon, I.L., Michaelian, K., Beltran, M.R., Posada-Amarillas, A., Ordejon, P., Artacho, E., Sanchez-Portal, D., Soler, J.M.: Lowest energy structures of gold nanoclusters. Phys. Rev. Lett. 81, 1600 (1998)CrossRefGoogle Scholar
  36. 36.
    Michaelian, K., Rendón, N., Garzón, I.L.: Structure and energetics of Ni, Ag, and Au nanoclusters. Phys. Rev. B. 60, 2000 (2000)CrossRefGoogle Scholar
  37. 37.
    Faken, D., Jónsson, H.: Systematic analysis of local atomic structure combined with 3D computer graphics. Comput. Mater. Sci. 2, 279 (1994)CrossRefGoogle Scholar
  38. 38.
    Hansmann, U.H.E., Wille, L.T.: Global optimization by energy landscape paving. Phys. Rev. Lett. 88, 068105 (2002)CrossRefGoogle Scholar
  39. 39.
    Laio, A., Parrinello, M.: Escaping free-energy minima. Proc. Natl. Acad. Sci. U S A 99, 12562 (2002)CrossRefGoogle Scholar
  40. 40.
    Goedecker, S.: Minima hopping: An efficient search method for the global minimum of the potential energy surface of complex molecular systems. J. Chem. Phys. 120, 9911 (2004)CrossRefGoogle Scholar
  41. 41.
    Sicher, M., Mohr, S., Goedecker, S.: Efficient moves for global geometry optimization methods and their application to binary systems. J. Chem. Phys. 134, 044106 (2011)CrossRefGoogle Scholar
  42. 42.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  43. 43.
    Gaudry, M., Cottancin, E., Pellarin, M., Lermé, J., Arnaud, L., Huntzinger, J.R., Vialle, J.M., Broyer, M., Rousset, J.L., Treilleux, M., Mélinon, P.: Size and composition dependence in the optical properties of mixed (transition metal/noble metal) embedded clusters. Phys. Rev. B 67, 155409 (2003)CrossRefGoogle Scholar
  44. 44.
    Langlois, C.T., Oikawa, T., Bayle-Guillemaud, P., Ricolleau, C.: Energy-filtered electron microscopy for imaging core-shell nanostructures. J. Nanopart. Res. 10, 997 (2008)CrossRefGoogle Scholar
  45. 45.
    Langlois, C., Alloyeau, D., Bouar, Y.L., Loiseau, A., Oikawa, T., Mottet, C., Ricolleau, C.: Growth and structural properties of Ag–Cu and Pt–Co bimetallic nanoparticles. Faraday Discuss. 138, 375 (2008)CrossRefGoogle Scholar
  46. 46.
    Lequien, F., Creuze, J., Berthier, F., Braems, I., Legrand, B.: Superficial segregation, wetting, and dynamical equilibrium in bimetallic clusters: a Monte Carlo study. Phys. Rev. B 78, 075414 (2008)CrossRefGoogle Scholar
  47. 47.
    Delfour, L., Creuze, J., Legrand, B.: Exotic behavior of the outer shell of bimetallic nanoalloys. Phys. Rev. Lett. 103, 205701 (2009)CrossRefGoogle Scholar
  48. 48.
    Brack, M.: The physics of simple metal-clusters—Self-consistent jellium model and semiclassical approaches. Rev. Mod. Phys. 65, 677 (1993)CrossRefGoogle Scholar
  49. 49.
    Mackay, A.L.: A dense non-crystallographic packing of equal spheres. Acta Crystallogr. 15, 916 (1962)CrossRefGoogle Scholar
  50. 50.
    Baletto, F., Ferrando, R.: Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev. Mod. Phys. 77, 371 (2005)CrossRefGoogle Scholar
  51. 51.
    Harris, I.A., Kidwell, L.S., Northby, J.A.: Icosahedral structure of large charged argon clusters. Phys. Rev. Lett. 53, 2390 (1984)CrossRefGoogle Scholar
  52. 52.
    Penuelas, J., Andreazza, P., Andreazza-Vignolle, C., Tolentino, H.C.N., Santis, M.D., Mottet, C.: Controlling structure and morphology of Pt–Co nanoparticles through dynamical or static coalescence effects. Phys. Rev. Lett. 100, 115502 (2008)CrossRefGoogle Scholar
  53. 53.
    Alloyeau, D., Ricolleau, C., Mottet, C., Oikawa, T., Langlois, C., Bouar, Y.L., Braidy, N., Loiseau, A.: Size and shape effects on the order-disorder phase transition in Pt–Co nanoparticles. Nature Mater. 8, 940 (2009)CrossRefGoogle Scholar
  54. 54.
    Demortiere, A., Petit, C.: First synthesis by liquid-liquid phase transfer of magnetic Co(x)Pt(100-x) nanoalloys. Langmuir 24, 2792 (2007)Google Scholar
  55. 55.
    Alloyeau, D., Prévot, C., LeBouar, Y., Oikawa, T., Langlois, C., Loiseau, A., Ricolleau, C.: Ostwald Ripening in Nanoalloys: When Thermodynamics Drives a Size-Dependent Particle Composition. Phys. Rev. Lett. 105, 255901 (2010)CrossRefGoogle Scholar
  56. 56.
    Hultgren, R., Desai, P.D., Hawkins, D.T., Gleiser, M., Kelley, K.K.: Values of the thermodynamic properties of binary alloys. Jossey-Bass Publishers, Berkeley (1981)Google Scholar
  57. 57.
    Rossi, G., Ferrando, R., Mottet, C.: Structure and chemical ordering in Pt–Co nanoalloys. Faraday Discuss. 138, 193 (2008)CrossRefGoogle Scholar
  58. 58.
    Barcaro, G., Ferrando, R., Fortunelli, A., Rossi, G.: Exotic Supported Pt–Co Nanostructures: from Clusters to Wires. J. Phys. Chem. Lett. 1, 111 (2010)CrossRefGoogle Scholar
  59. 59.
    Frank, F.C., Kasper, J.S.: Complex alloy structures regarded as sphere packings. I. definitions and basic principles. Acta Crystallogr. 11, 184 (1958)CrossRefGoogle Scholar
  60. 60.
    Khan, N.A., Uhl, A., Shaikhutdinov, S., Freund, H.J.: Alumina supported model Pd-Ag catalysts: a combined STM, XPS, TPD and IRAS study. Surf. Sci. 600, 1849 (2006)CrossRefGoogle Scholar
  61. 61.
    Negreiros, F.R., Barcaro, G., Kuntová, Z., Rossi, G., Ferrando, R., Fortunelli, A.: Structures of gas-phase Ag–Pd nanoclusters: a computational study. J. Chem. Phys. 132, 234703 (2010)CrossRefGoogle Scholar
  62. 62.
    Kim, H.Y., Kim, H.G., Tyu, J.H., Lee, H.M.: Preferential segregation of Pd atoms in the Ag–Pd bimetallic cluster: density functional theory and molecular dynamics simulation. Phys. Rev. B 75, 212105 (2007)CrossRefGoogle Scholar
  63. 63.
    Frenkel, D., Smit, B.: Understanding Molecular Simulation. Academic Press, San Diego (1996)MATHGoogle Scholar
  64. 64.
    Aguado, A., López, J.M.: Melting-like transition in a ternary alkali nanoalloy: \(\hbox{Li}_{13}\,\hbox{Na}_{30}\,\hbox{Cs}_{12}.\) J. Chem. Theory Comput. 1, 299 (2005)Google Scholar
  65. 65.
    Aguado, A., López, J.M.: Molecular dynamics simulations of the meltinglike transition in \(\hbox{Li}_{13}\,\hbox{Na}_{42}\) and \(\hbox{Na}_{13}\,\hbox{Cs}_{42}\) clusters. Phys. Rev. B 71, 075415 (2005)Google Scholar
  66. 66.
    Huang, S.P., Balbuena, P.B.: Melting of bimetallic Cu–Ni nanoclusters. J. Phys. Chem. B 106, 7225 (2002)CrossRefGoogle Scholar
  67. 67.
    Sankaranarayanan, S.K.R.S., Bhethanabotla, V.R., Joseph, B.: Molecular dynamics simulation study of the melting of Pd–Pt nanoclusters. Phys. Rev. B 71, 195415 (2005)CrossRefGoogle Scholar
  68. 68.
    Kuntová, Z., Rossi, G., Ferrando, R.: Melting of core-shell Ag–Ni and Ag–Co nanoclusters studied via molecular dynamics simulations. Phys. Rev. B 77, 205431 (2008)CrossRefGoogle Scholar
  69. 69.
    van Hoof, T., Hou, M.: Structural and thermodynamic properties of Ag–Co nanoclusters. Phys. Rev. B 72, 115434 (2005)CrossRefGoogle Scholar
  70. 70.
    Calvo, F.: Solid-solution precursor to melting in onion-ring Pd–Pt nanoclusters: a case of second-order-like phase change? Faraday Discuss. 138, 75 (2008)CrossRefGoogle Scholar
  71. 71.
    Mottet, C., Rossi, G., Baletto, F., Ferrando, R.: Single impurity effect on the melting of nanoclusters. Phys. Rev. Lett. 95, 035501 (2005)CrossRefGoogle Scholar
  72. 72.
    Newman, M.E.J., Barkema, G.T.: Monte Carlo Methods in Statistical Physics.. Clarendon Press, Oxford (1999)Google Scholar
  73. 73.
    Baletto, F., Mottet, C., Ferrando, R.: Reentrant morphology transition in the growth of free silver nanoclusters. Phys. Rev. Lett. 84, 5544 (2000)CrossRefGoogle Scholar
  74. 74.
    Baletto, F., Mottet, C., Ferrando, R.: Microscopic mechanisms of the growth of metastable silver icosahedra. Phys. Rev. B 63, 155408 (2001)CrossRefGoogle Scholar
  75. 75.
    Baletto, F., Mottet, C., Ferrando, R.: Growth simulations of silver shells on copper and palladium nanoclusters. Phys. Rev. B 66, 155420 (2002)CrossRefGoogle Scholar
  76. 76.
    Ferrer, D., Torres-Castro, A., Gao, X., Sepulveda-Guzman, S., Ortiz-Mendez, U., Jose-Yacaman, M.: Three-layer core/shell structure in Au–Pd bimetallic nanoparticles. Nano Letters 7, 1701 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  1. 1.Dipartimento di Fisica dell’Università di GenovaGenovaItaly

Personalised recommendations