Skip to main content
Book cover

Nanoalloys pp 369–404Cite as

Surface Studies of Catalysis by Metals: Nanosize and Alloying Effects

  • Chapter
  • First Online:

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Supported metallic nanoparticles have long been employed to catalyze a number of industrially-relevant chemical reactions. In many cases, metal addition has allowed one to increase the activity, selectivity and/or stability of single-metal catalysts. However, a detailed understanding of catalysis by metal nanoparticles, including nanoalloys, requires the use of model catalysts such as single-crystal surfaces and well-defined supported nanoparticles. In this chapter, after a brief presentation of its basic concepts, the structural aspects of heterogeneous catalysis by metals and alloys will be illustrated by several examples from (mainly) surface science. The so-called “size” and “alloying” effects, which have been classically described in terms of geometric and electronic effects, might have more subtle origins (morphology, support, etc.) and be interrelated. In turn, the structure of supported nanoparticles is highly sensitive to the reaction conditions, as illustrated by examples of adsorption-induced surface restructuring and segregation. In spite of this complexity, it will be shown that the recent advances in operando experimentation and computer simulation open the way to a “rational design” of bimetallic catalysts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The additional structure at the bottom of the downshifted 5σ orbital is only due to the interaction with the 4σ orbital of CO.

  2. 2.

    These examples show again that the actual catalytic phase is not necessarily metallic, but may also be in hydride, carbide, or oxide -like forms, depending on the reaction conditions.

References

  1. Chorkendorff, I., Niemantsverdriet, J.W.: Concepts of Modern Catalysis and Kinetics. Wiley-VCH, Weinheim (2007)

    Google Scholar 

  2. Kluksdahl, H.E.: Reforming a sulfur-free naphtha with a platinum-rhenium catalyst. Patent US 3,415,737, 1968

    Google Scholar 

  3. Sinfelt, J.H.: Combination reforming process. Patent US 3,791,961, 1974

    Google Scholar 

  4. Day, M.: Supported metal catalysts in reforming. In: Anderson, J.A., Fernandez Garcia, M. (eds.) Supported Metals in Catalysis. Imperial College Press, London (2005)

    Google Scholar 

  5. Sinfelt, J.H.: Bimetallic Catalysts: Discoveries, Concepts, and Applications. Wiley, New York (1983)

    Google Scholar 

  6. Ponec, V., Bond, G.C.: Catalysis by Metals and Alloys. Elsevier, Amsterdam (1995)

    Google Scholar 

  7. Epron, F., Especel, C., Lafaye, G., Marécot, P.: Multimetallic nanoparticles prepared by redox processes applied in catalysis. In: Astruc, D. (ed.) Nanoparticles and Catalysis. Wiley-VCH, Weinheim (2008)

    Google Scholar 

  8. Ertl, G., Knozinger, H., Weitkamp, J. (eds.): Handbook of Heterogeneous Catalysis. Wiley-VCH, Weinheim (2008)

    Google Scholar 

  9. Sinfelt, J.H.: Catalysis by alloys and bimetallic clusters. Acc. Chem. Res. 10, 15–20 (1977)

    Article  Google Scholar 

  10. Coq, B., Figueras, F.: Bimetallic palladium catalysts: influence of the co-metal on the catalyst performance. J. Mol. Catal. A. 173, 117–134 (2001)

    Article  Google Scholar 

  11. Guczi, L.: Bimetallic nano-particles: featuring structure and reactivity. Catal. Today 101, 53–64 (2005)

    Article  Google Scholar 

  12. Ferrando, R., Jellinek, J., Johnston, R.L.: Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108, 845–910 (2008)

    Article  Google Scholar 

  13. Hammer, B., Nørskov, J.K.: Theoretical surface science and catalysis—calculations and concepts. Adv. Catal. 45, 71–129 (2000)

    Article  Google Scholar 

  14. Nørskov, J.K., Bligaard, T., Rossmeisl, J., Christensen, C.H.: Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009)

    Article  Google Scholar 

  15. Neurock, M.: Perspectives on the first principles elucidation and the design of active sites. J. Catal. 216, 73–88 (2003)

    Article  Google Scholar 

  16. Reuter, K., Frenkel, D., Scheffler, M.: The steady state of heterogeneous catalysis studied by first-principles statistical mechanics. Phys. Rev. Lett. 93, 116105-1-4 (2004)

    Article  Google Scholar 

  17. Greeley, J., Mavrikakis, M.: Alloy catalysts designed from first principles. Nat. Mater. 3, 810–815 (2004)

    Article  Google Scholar 

  18. Digne, M., Sautet, P., Raybaud, P., Euzen, P., Toulhoat, H.: Use of DFT to achieve a rational understanding of acid-basic properties of γ-alumina surfaces. J. Catal. 226, 54–68 (2004)

    Article  Google Scholar 

  19. Loffreda, D., Delbecq, F., Vigné, F., Sautet, P.: Fast prediction of selectivity in heterogeneous catalysis from extended Bronsted-Evans-Polanyi relations: a theoretical insight. Angew. Chem. Int. Ed. 48, 8978–8980 (2009)

    Article  Google Scholar 

  20. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169–11186 (1996)

    Article  Google Scholar 

  21. Rodriguez, J.A., Goodman, D.W.: The nature of the metal–metal bond in bimetallic surfaces. Science 257, 897–903 (1992)

    Article  Google Scholar 

  22. Hammer, B., Morikawa, Y., Nørskov, J.K.: CO chemisorption at metal surfaces and overlayers. Phys. Rev. Lett. 76, 2141–2144 (1996)

    Article  Google Scholar 

  23. Dahl, S., Logadottir, A., Egeberg, R.C., Larsen, J.H., Chorkendorff, I., Törnqvist, E., Nørskov, J.K.: Role of steps in N2 activation on Ru(0001). Phys. Rev. Lett. 83, 1814–1817 (1999)

    Article  Google Scholar 

  24. Neurock, M., Pallassana, V., van Santen, R.A.: The importance of transient states at higher coverages in catalytic reactions. J. Am. Chem. Soc. 122, 1150–1153 (2000)

    Article  Google Scholar 

  25. Cremer, P.S., Su, X., Shen, Y.R., Somorjai, G.A.: Ethylene hydrogenation on Pt(111) monitored in situ at high pressures using sum frequency generation. J. Am. Chem. Soc. 118, 2942–2949 (1996)

    Article  Google Scholar 

  26. Nørskov, J.K., Bligaard, T., Logadottir, A., Bahn, S., Hansen, L.B., Bollinger, M., Bengaard, H., Hammer, B., Sljivancanin, Z., Mavrikakis, M., Xu, Y., Dahl, S., Jacobsen, C.J.H.: Universality in heterogeneous catalysis. J. Catal. 209, 275–278 (2002)

    Article  Google Scholar 

  27. Harris, N.: Modern Vacuum Practice. Nigel Harris, England (2007)

    Google Scholar 

  28. Henry, C.R.: Surface studies of supported model catalysts. Surf. Sci. Rep. 31, 231–325 (1998)

    Article  Google Scholar 

  29. Somorjai, G.A.: Introduction to Surface Chemistry and Catalysis. Wiley, New York (1994)

    Google Scholar 

  30. Piccolo, L.: Réactivité d’agrégats de palladium supportés sur MgO(100): adsorption du NO, réaction CO + NO et CO + O. Thesis, University of Marseille (1999)

    Google Scholar 

  31. Baümer, M., Freund, H.J.: Metal deposits on well-ordered oxide films. Prog. Surf. Sci. 61, 127–198 (1999)

    Article  Google Scholar 

  32. Santra, A.K., Goodman, D.W.: Oxide-supported metal clusters: models for heterogeneous catalysts. J. Phys. Condens. Mat. 15, R31–R62 (2003)

    Article  Google Scholar 

  33. Heiz, U., Schneider, W.D.: Nanoassembled model catalysts. J. Phys. Condens. Mat. 33, R85–R102 (2000)

    Google Scholar 

  34. Rousset, J.L., Renouprez, A.J., Cadrot, A.M.: Ion-scattering study and Monte Carlo simulations of surface segregation in Pd–Pt nanoclusters obtained by laser vaporization of bulk alloys. Phys. Rev. B. 58, 2150–2156 (1998)

    Article  Google Scholar 

  35. Jürgens, B., Borchert, H., Ahrenstorf, K., Sonström, P., Pretorius, A., Schowalter, M., Gries, K., Zielasek, V., Rosenauer, A., Weller, H., Bäumer, M.: Colloidally prepared nanoparticles for the synthesis of structurally well-defined and highly active heterogeneous catalysts. Angew. Chem. Int. Ed. 47, 8946–8949 (2008)

    Article  Google Scholar 

  36. Uzio, D., Berhault, G.: Factors governing the catalytic reactivity of metallic nanoparticles. Catal. Rev. Sci. Eng. 52, 106–131 (2010)

    Article  Google Scholar 

  37. Kolasinski, K.W.: Surface science: foundations of catalysis and nanoscience. Wiley, Chichester (2008)

    Google Scholar 

  38. Molenbroek, A.M., Helveg, S., Topsøe, H., Clausen, B.S.: Nano-particles in heterogeneous catalysis. Top. Catal. 52, 1303–1311 (2009)

    Article  Google Scholar 

  39. Rodriguez, J.A., Goodman, D.W.: High-pressure catalytic reactions over single-crystal metal surfaces. Surf. Sci. Rep. 14, 1–107 (1991)

    Article  Google Scholar 

  40. Piccolo, L., Piednoir, A., Bertolini, J.: Pd–Au single-crystal surfaces: segregation properties and catalytic activity in the selective hydrogenation of 1,3-butadiene. Surf. Sci. 592, 169–181 (2005)

    Article  Google Scholar 

  41. Rucker, T.G., Franck, K., Colomb, D., Logan, M.A., Somorjai, G.A.: Novel high-pressure isolation cell capable of reaching 120 atm mounted in an ultrahigh-vacuum chamber. Rev. Sci. Instrum. 58, 2292–2294 (1987)

    Article  Google Scholar 

  42. Wang, L., Tysoe, W.T.: An investigation of ethylene hydrogenation catalyzed by metallic molybdenum using an isolatable high-pressure reactor: Identification of the reaction site and the role of carbonaceous deposits. J. Catal. 128, 320–336 (1991)

    Article  Google Scholar 

  43. Zhao, Z., Diemant, T., Häring, T., Rauscher, H., Behm, R.J.: Small-volume, ultrahigh-vacuum-compatible high-pressure reaction cell for combined kinetic and in situ IR spectroscopic measurements on planar model catalysts. Rev. Sci. Instrum. 76, 123903-1-8 (2005)

    Google Scholar 

  44. Hendriksen, B.L.M., Frenken, J.W.M.: CO oxidation on Pt(110): scanning tunneling microscopy inside a high-pressure flow reactor. Phys. Rev. Lett. 89, 046101-1-4 (2002)

    Article  Google Scholar 

  45. Brongersma, H., Draxler, M., Deridder, M., Bauer, P.: Surface composition analysis by low-energy ion scattering. Surf. Sci. Rep. 62, 63–109 (2007)

    Article  Google Scholar 

  46. Endo, M., Matsumoto, T., Kubota, J., Domen, K., Hirose, C.: Oxidation of methanol by molecularly adsorbed oxygen on Pt(111) under vacuum and ambient pressure conditions studied by infrared reflection absorption spectroscopy: identification of formate intermediate. Surf. Sci. 441, L931–L937 (1999)

    Article  Google Scholar 

  47. Jugnet, Y., Aires, F.J.C.S., Deranlot, C., Piccolo, L., Bertolini, J.C.: CO chemisorption on Au(1 1 0) investigated under elevated pressures by polarized reflection absorption infrared spectroscopy and scanning tunneling microscopy. Surf. Sci. 521, L639–L644 (2002)

    Article  Google Scholar 

  48. Rupprechter, G.: Sum Frequency generation and polarization-modulation infrared reflection absorption spectroscopy of functioning model catalysts from ultrahigh vacuum to ambient pressure. Adv. Catal. 51, 133–263 (2007)

    Article  Google Scholar 

  49. Vang, R.T., Lauritsen, J.V., Lægsgaard, E., Besenbacher, F.: Scanning tunneling microscopy as a tool to study catalytically relevant model systems. Chem. Soc. Rev. 37, 2191–2203 (2008)

    Article  Google Scholar 

  50. Tao, F., Dag, S., Wang, L.-W., Liu, Z., Butcher, D.R., Bluhm, H., Salmeron, M., Somorjai, G.A.: Break-up of stepped platinum catalyst surfaces by high CO coverage. Science 327, 850–853 (2010)

    Article  Google Scholar 

  51. Ackermann, M., Pedersen, T., Hendriksen, B., Robach, O., Bobaru, S., Popa, I., Quiros, C., Kim, H., Hammer, B., Ferrer, S., Frenken, J.: Structure and reactivity of surface oxides on Pt(110) during catalytic CO oxidation. Phys. Rev. Lett. 95, 255505-1-4 (2005)

    Article  Google Scholar 

  52. Saint-Lager, M.C., Jugnet, Y., Dolle, P., Piccolo, L., Baudoing-Savois, R., Bertolini, J.C., Bailly, A., Robach, O., Walker, C., Ferrer, S.: Pd8Ni92(110) surface structure from surface X-ray diffraction. Surface evolution under hydrogen and butadiene reactants at elevated pressure. Surf. Sci. 587, 229–235 (2005)

    Article  Google Scholar 

  53. Salmeron, M., Schlögl, R.: Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology. Surf. Sci. Rep. 63, 169–199 (2008)

    Article  Google Scholar 

  54. Tao, F., Grass, M.E., Zhang, Y., Butcher, D.R., Renzas, J.R., Liu, Z., Chung, J.Y., Mun, B.S., Salmeron, M., Somorjai, G.A.: Reaction-driven restructuring of Rh–Pd and Pt–Pd core-shell nanoparticles. Science 322, 932–934 (2008)

    Article  Google Scholar 

  55. Strongin, D.R., Carrazza, J., Bare, S.R., Somorjai, G.A.: The importance of C7 sites and surface roughness in the ammonia synthesis reaction over iron. J. Catal. 103, 213–215 (1987)

    Article  Google Scholar 

  56. Freund, H.J., Baümer, M., Kuhlenbeck, H.: Catalysis and surface science: what do we learn from studies of oxide-supported cluster model systems? Adv. Catal. 45, 333–384 (2000)

    Article  Google Scholar 

  57. Che, M., Bennett, C.O.: The influence of particle size on the catalytic properties of supported metals. Adv. Catal. 36, 55–172 (1989)

    Article  Google Scholar 

  58. Henry, C.R., Chapon, C., Giorgio, S., Goyhenex, C.: Size effect in heterogeneous catalysis: a surface science approach. In: Lambert, R.M., Pacchioni, G. (eds.) Chemisorption and reactivity on supported clusters and thin films. Kluwer Academic Publishers, Dordrecht (1997)

    Google Scholar 

  59. Van Santen, R.A.: Complementary structure sensitive and insensitive catalytic relationships. Acc. Chem. Res. 42, 57–66 (2009)

    Article  Google Scholar 

  60. Heiz, U., Sanchez, A., Abbet, S., Schneider, W.D.: Catalytic oxidation of carbon monoxide on monodispersed platinum clusters: each atom counts. J. Am. Chem. Soc. 121, 3214–3217 (1999)

    Article  Google Scholar 

  61. Van Hardeveld, R., Hartog, F.: The statistics of surface atoms and surface sites on metal crystals. Surf. Sci. 15, 189–230 (1969)

    Article  Google Scholar 

  62. Piccolo, L., Henry, C.R.: NO-CO reaction kinetics on Pd/MgO model catalysts: morphology and support effects. J. Mol. Catal. A. 167, 181–190 (2001)

    Article  Google Scholar 

  63. Freund, H.J., Libuda, J., Baümer, M., Risse, T., Carlsson, A.: Cluster, facets, and edges: Site-dependent selective chemistry on model catalysts. Chem. Rec. 3, 181–200 (2003)

    Article  Google Scholar 

  64. Piccolo, L., Valcarcel, A., Bausach, M., Thomazeau, C., Uzio, D., Berhault, G.: Tuning the shape of nanoparticles to control their catalytic properties: selective hydrogenation of 1,3-butadiene on Pd/Al2O3. Phys. Chem. Chem. Phys. 10, 5504–5506 (2008)

    Article  Google Scholar 

  65. Li, Y., Liu, Q., Shen, W.: Morphology-dependent nanocatalysis: metal particles. Dalton Trans. 40, 5811 (2011)

    Article  Google Scholar 

  66. Kitakami, O., Sato, H., Shimada, Y., Sato, F., Tanaka, M.: Size effect on the crystal phase of cobalt fine particles. Phys. Rev. B. 56, 13849–13854 (1997)

    Article  Google Scholar 

  67. Nørskov, J.K., Bligaard, T., Hvolbæk, B., Abild-Pedersen, F., Chorkendorff, I., Christensen, C.H.: The nature of the active site in heterogeneous metal catalysis. Chem. Soc. Rev. 37, 2163–2171 (2008)

    Article  Google Scholar 

  68. Ertl, G.: Reactions at surfaces: from atoms to complexity (Nobel lecture). Angew. Chem. Int. Ed. 47, 3524–3535 (2008)

    Article  Google Scholar 

  69. Ertl, G.: Surface science and catalysis—studies on the mechanism of ammonia synthesis: the P. H. Emmett Award address. Catal. Rev. Sci. Eng. 21, 201–223 (1980)

    Article  Google Scholar 

  70. Stoltze, P., Nørskov, J.K.: Bridging the “pressure gap” between ultrahigh-vacuum surface physics and high-pressure catalysis. Phys. Rev. Lett. 55, 2502–2505 (1985)

    Article  Google Scholar 

  71. Honkala, K., Hellman, A., Remediakis, I.N., Logadottir, A., Carlsson, A., Dahl, S., Christensen, C.H., Nørskov, J.K.: Ammonia synthesis from first-principles calculations. Science 307, 555–558 (2005)

    Article  Google Scholar 

  72. Haruta, M., Yamada, N., Kobayashi, T., Iijima, S.: Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 115, 301–309 (1989)

    Article  Google Scholar 

  73. Haruta, M.: Gold as a novel catalyst in the 21st century: preparation, working mechanism and applications. Gold. Bull. 37, 27–36 (2004)

    Article  Google Scholar 

  74. Bond, G.C., Louis, C., Thompson, D.T.: Catalysis by Gold. Imperial College Press, London (2006)

    Google Scholar 

  75. Cho, A.: Connecting the dots to custom catalysts. Science 299, 1684–1685 (2003)

    Article  Google Scholar 

  76. Hvolbæk, B., Janssens, T.V.W., Clausen, B.S., Falsig, H., Christensen, C.H., Nørskov, J.K.: Catalytic activity of Au nanoparticles. Nano Today 2, 14–18 (2007)

    Article  Google Scholar 

  77. Chen, M.S., Goodman, D.W.: The Structure of catalytically active gold on titania. Science 306, 252–255 (2004)

    Article  Google Scholar 

  78. Arrii, S., Morfin, F., Renouprez, A.J., Rousset, J.L.: Oxidation of CO on gold supported catalysts prepared by laser vaporization: direct evidence of support contribution. J. Am. Chem. Soc. 126, 1199–1205 (2004)

    Article  Google Scholar 

  79. Molina, L.M., Hammer, B.: Some recent theoretical advances in the understanding of the catalytic activity of Au. Appl. Catal. A 291, 21–31 (2005)

    Article  Google Scholar 

  80. Yoon, B., Häkkinen, H., Landman, U., Wörz, A.S., Antonietti, J.-M., Abbet, S., Judai, K., Heiz, U.: Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 307, 403–407 (2005)

    Article  Google Scholar 

  81. Lin, X., Yang, B., Benia, H.-M., Myrach, P., Yulikov, M., Aumer, A., Brown, M.A., Sterrer, M., Bondarchuk, O., Kieseritzky, E., Rocker, J., Risse, T., Gao, H.-J., Nilius, N., Freund, H.-J.: Charge-mediated adsorption behavior of CO on MgO-supported Au clusters. J. Am. Chem. Soc. 132, 7745–7749 (2010)

    Article  Google Scholar 

  82. Nassreddine, S., Massin, L., Aouine, M., Geantet, C., Piccolo, L.: Thiotolerant Ir/SiO2-Al2O3 bifunctional catalysts: Effect of metal-acid site balance on tetralin hydroconversion. J. Catal. 278, 253–265 (2011)

    Article  Google Scholar 

  83. Pajonk, G.M.: Contribution of spillover effects to heterogeneous catalysis. Appl. Catal. A 202, 157–169 (2000)

    Article  Google Scholar 

  84. Henry, C.R., Chapon, C., Duriez, C.: Precursor state in the chemisorption of CO on supported palladium clusters. J. Chem. Phys. 95, 700–705 (1991)

    Article  Google Scholar 

  85. Libuda, J., Freund, H.J.: Molecular beam experiments on model catalysts. Surf. Sci. Rep. 57, 157–298 (2005)

    Article  Google Scholar 

  86. Röttgen, M.A., Abbet, S., Judai, K., Antonietti, J.-M., Wörz, A.S., Arenz, M., Henry, C.R., Heiz, U.: Cluster chemistry: size-dependent reactivity induced by reverse spill-over. J. Am. Chem. Soc. 129, 9635–9639 (2007)

    Article  Google Scholar 

  87. Benkhaled, M., Descorme, C., Duprez, D., Morin, S., Thomazeau, C., Uzio, D.: Study of hydrogen surface mobility and hydrogenation reactions over alumina-supported palladium catalysts. Appl. Catal. A 346, 36–43 (2008)

    Article  Google Scholar 

  88. Tauster, S.J., Fung, S.C., Garten, R.L.: Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 100, 170–175 (1978)

    Article  Google Scholar 

  89. Pesty, F., Steinrück, H.-P., Madey, T.E.: Thermal stability of Pt films on TiO2(110): evidence for encapsulation. Surf. Sci. 339, 83–95 (1995)

    Article  Google Scholar 

  90. Dulub, O., Hebenstreit, W., Diebold, U.: Imaging cluster surfaces with atomic resolution: the strong metal-support interaction state of Pt supported on TiO2(110). Phys. Rev. Lett. 84, 3646 (2000)

    Article  Google Scholar 

  91. Haller, G.: New catalytic concepts from new materials: understanding catalysis from a fundamental perspective, past, present, and future. J. Catal. 216, 12–22 (2003)

    Article  Google Scholar 

  92. Fu, Q., Wagner, T.: Interaction of nanostructured metal overlayers with oxide surfaces. Surf. Sci. Rep. 62, 431–498 (2007)

    Article  Google Scholar 

  93. Qin, Z.-H., Lewandowski, M., Sun, Y.-N., Shaikhutdinov, S., Freund, H.-J.: Encapsulation of Pt nanoparticles as a result of strong metal−support interaction with Fe3O4 (111). J. Phys. Chem. C 112, 10209–10213 (2008)

    Article  Google Scholar 

  94. Graoui, H., Giorgio, S., Henry, C.R.: Shape variations of Pd particles under oxygen adsorption. Surf. Sci. 417, 350–360 (1998)

    Article  Google Scholar 

  95. Yang, F., Chen, M.S., Goodman, D.W.: Sintering of Au particles supported on TiO2(110) during CO oxidation. J. Phys. Chem. C 113, 254–260 (2009)

    Article  Google Scholar 

  96. Tao, F., Dag, S., Wang, L.-W., Liu, Z., Butcher, D.R., Salmeron, M., Somorjai, G.A.: Restructuring of hex-Pt(100) under CO gas environments: formation of 2-D nanoclusters. Nano Lett. 9, 2167–2171 (2009)

    Article  Google Scholar 

  97. Peters, K.F., Steadman, P., Isern, H., Alvarez, J., Ferrer, S.: Elevated-pressure chemical reactivity of carbon monoxide over Au(111). Surf. Sci. 467, 10–22 (2000)

    Article  Google Scholar 

  98. Loffreda, D., Piccolo, L., Sautet, P.: Surface restructuring under gas pressure from first principles: a mechanism for CO-induced removal of the Au(110)-(1×2) reconstruction. Phys. Rev. B. 71, 113414-1-4 (2005)

    Article  Google Scholar 

  99. Madey, T.E., Chen, W., Wang, H., Kaghazchi, P., Jacob, T.: Nanoscale surface chemistry over faceted substrates: structure, reactivity and nanotemplates. Chem. Soc. Rev. 37, 2310–2327 (2008)

    Article  Google Scholar 

  100. Teschner, D., Borsodi, J., Wootsch, A., Revay, Z., Havecker, M., Knop-Gericke, A., Jackson, S.D., Schlogl, R.: The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 320, 86–89 (2008)

    Article  Google Scholar 

  101. Sachtler, W.M.H., Dorgelo, G.J.H., Jongepier, R.: Phase composition and work function of vacuum-deposited copper-nickel alloy films. J. Catal. 4, 100–102 (1965)

    Article  Google Scholar 

  102. Sachtler, W.M.H., Van Der Plank, P.: The role of individual surface atoms in chemisorption and catalysis by nickel-copper alloys. Surf. Sci. 18, 62–79 (1969)

    Article  Google Scholar 

  103. Campbell, C.T.: Bimetallic surface chemistry. Annu. Rev. Phys. Chem. 41, 775–837 (1990)

    Article  Google Scholar 

  104. Rodriguez, J.A.: Physical and chemical properties of bimetallic surfaces. Surf. Sci. Rep. 24, 223–287 (1996)

    Article  Google Scholar 

  105. Chen, J.G., Menning, C.A., Zellner, M.B.: Monolayer bimetallic surfaces: Experimental and theoretical studies of trends in electronic and chemical properties. Surf. Sci. Rep. 63, 201–254 (2008)

    Article  Google Scholar 

  106. Bertolini, J.-C.: Model catalysis by metals and alloys: from single-crystal surfaces to well-defined nano-particles. Catal. Today 138, 84–96 (2008)

    Article  Google Scholar 

  107. Rousset, J.L., Stievano, L., Aires, F.J.C.S., Geantet, C., Renouprez, A.J., Pellarin, M.: Hydrogenation of toluene over γ-Al2O3-supported Pt, Pd, and Pd–Pt model catalysts obtained by laser vaporization of bulk metals. J. Catal. 197, 335–343 (2001)

    Article  Google Scholar 

  108. Ormerod, R.M., Baddeley, C.J., Lambert, R.M.: Geometrical and electronic effects in the conversion of acetylene to benzene on Au(111)/Pd and Au/Pd surface alloys. Surf. Sci. 259, L709–L713 (1991)

    Article  Google Scholar 

  109. Ponec, V.: Alloy catalysts: the concepts. Appl. Catal. A 222, 31–45 (2001)

    Article  Google Scholar 

  110. Maroun, F., Ozanam, F., Magnussen, O.M., Behm, R.J.: The role of atomic ensembles in the reactivity of bimetallic electrocatalysts. Science 293, 1811–1814 (2001)

    Article  Google Scholar 

  111. Chen, M., Kumar, D., Yi, C.W., Goodman, D.W.: The promotional effect of gold in catalysis by palladium-gold. Science 310, 291–293 (2005)

    Article  Google Scholar 

  112. Vang, R.T., Honkala, K., Dahl, S., Vestergaard, E.K., Schnadt, J., Laegsgaard, E., Clausen, B.S., Nørskov, J.K., Besenbacher, F.: Controlling the catalytic bond-breaking selectivity of Ni surfaces by step blocking. Nat. Mater. 4, 160–162 (2005)

    Article  Google Scholar 

  113. Stroppa, A., Mittendorfer, F., Andersen, J.N., Parteder, G., Allegretti, F., Surnev, S., Netzer, F.P.: Adsorption and dissociation of CO on bare and Ni-decorated stepped Rh(553) surfaces. J. Phys. Chem. C 113, 942–949 (2009)

    Article  Google Scholar 

  114. Besenbacher, F., Chorkendorff, I., Clausen, B.S., Hammer, B., Molenbroek, A.M., Nørskov, J.K., Stensgaard, I.: Design of a surface alloy catalyst for steam reforming. Science 279, 1913–1915 (1998)

    Article  Google Scholar 

  115. Weigand, P., Jelinek, B., Hofer, W., Varga, P.: Preferential sputtering and segregation reversal: (100) and (110) surfaces of Pt25Ni75 single crystal alloys. Surf. Sci. 301, 306–312 (1994)

    Article  Google Scholar 

  116. Yudanov, I.V., Neyman, K.M.: Stabilization of Au at edges of bimetallic PdAu nanocrystallites. Phys. Chem. Chem. Phys. 12, 5094–5100 (2010)

    Article  Google Scholar 

  117. Abbott, H.L., Aumer, A., Lei, Y., Asokan, C., Meyer, R.J., Sterrer, M., Shaikhutdinov, S., Freund, H.-J.: CO adsorption on monometallic and bimetallic Au−Pd nanoparticles supported on oxide thin films. J. Phys. Chem. C 114, 17099–17104 (2010)

    Article  Google Scholar 

  118. Stamenkovic, V.R., Fowler, B., Mun, B.S., Wang, G., Ross, P.N., Lucas, C.A., Marković, N.M.: Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007)

    Article  Google Scholar 

  119. Stamenkovic, V.R., Mun, B.S., Arenz, M., Mayrhofer, K.J.J., Lucas, C.A., Wang, G., Ross, P.N., Markovic, N.M.: Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 6, 241–247 (2007)

    Article  Google Scholar 

  120. Wu, J., Zhang, J., Peng, Z., Yang, S., Wagner, F.T., Yang, H.: Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J. Am. Chem. Soc. 132, 4984–4985 (2010)

    Article  Google Scholar 

  121. Strasser, P., Koh, S., Anniyev, T., Greeley, J., More, K., Yu, C., Liu, Z., Kaya, S., Nordlund, D., Ogasawara, H., Toney, M.F., Nilsson, A.: Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010)

    Article  Google Scholar 

  122. Kitchin, J.R., Nrskov, J.K., Barteau, M.A., Chen, J.G.: Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys. Rev. Lett. 93, 156801-1-4 (2004)

    Article  Google Scholar 

  123. Schlapka, A., Lischka, M., Groß, A., Käsberger, U., Jakob, P.: Surface strain versus substrate interaction in heteroepitaxial metal layers: Pt on Ru(0001). Phys. Rev. Lett. 91, 016101-1-4 (2003)

    Article  Google Scholar 

  124. Kibler, L.A., El-Aziz, A.M., Hoyer, R., Kolb, D.M.: Tuning reaction rates by lateral strain in a palladium monolayer. Angew. Chem. Int. Ed. 44, 2080–2084 (2005)

    Article  Google Scholar 

  125. Wang, J.X., Inada, H., Wu, L., Zhu, Y., Choi, Y., Liu, P., Zhou, W.-P., Adzic, R.R.: Oxygen reduction on well-defined core−shell nanocatalysts: particle size, facet, and Pt shell thickness effects. J. Am. Chem. Soc. 131, 17298–17302 (2009)

    Article  Google Scholar 

  126. Chen, S., Ferreira, P.J., Sheng, W., Yabuuchi, N., Allard, L.F., Shao-Horn, Y.: Enhanced activity for oxygen reduction reaction on “Pt3Co” nanoparticles: direct evidence of percolated and sandwich-segregation structures. J. Am. Chem. Soc. 130, 13818–13819 (2008)

    Article  Google Scholar 

  127. Miura, H.: Preparation of supported bimetallic catalysts by means of selective deposition using mobile metal compounds as precursors. Catal. Today 28, 215–221 (1996)

    Article  Google Scholar 

  128. Hugon, A., Delannoy, L., Krafft, J.-M., Louis, C.: Selective hydrogenation of 1,3-butadiene in the presence of an excess of alkenes over supported bimetallic gold−palladium catalysts. J. Phys. Chem. C 114, 10823–10835 (2010)

    Article  Google Scholar 

  129. Jugnet, Y., Sedrati, R., Bertolini, J.: Selective hydrogenation of 1,3-butadiene on Pt3Sn(111) alloys: comparison to Pt(111). J. Catal. 229, 252–258 (2005)

    Article  Google Scholar 

  130. Zhao, H., Koel, B.E.: Hydrogenation of 1,3-butadiene on two ordered Sn/Pt(111) surface alloys. J. Catal. 234, 24–32 (2005)

    Article  Google Scholar 

  131. Vigné, F., Haubrich, J., Loffreda, D., Sautet, P., Delbecq, F.: Highly selective hydrogenation of butadiene on Pt/Sn alloy elucidated by first-principles calculations. J. Catal. 275, 129–139 (2010)

    Article  Google Scholar 

  132. Gonzalez, S., Neyman, K.M., Shaikhutdinov, S., Freund, H.-J., Illas, F.: On the promoting role of Ag in selective hydrogenation reactions over Pd–Ag bimetallic catalysts: a theoretical study. J. Phys. Chem. C 111, 6852–6856 (2007)

    Article  Google Scholar 

  133. Piccolo, L., Piednoir, A., Bertolini, J.: Absorption and oxidation of hydrogen at Pd and Pd–Au (111) surfaces. Surf. Sci. 600, 4211–4215 (2006)

    Article  Google Scholar 

  134. Valcarcel, A., Morfin, F., Piccolo, L.: Alkene hydrogenation on metal surfaces: Why and when are Pd overlayers more efficient catalysts than bulk Pd? J. Catal. 263, 315–320 (2009)

    Article  Google Scholar 

  135. Filhol, J.-S., Simon, D., Sautet, P.: Understanding the high activity of a nanostructured catalyst obtained by a deposit of Pd on Ni: first principle calculations. J. Am. Chem. Soc. 126, 3228–3233 (2004)

    Article  Google Scholar 

  136. Valcarcel, A., Loffreda, D., Delbecq, F., Piccolo, L.: Structure of the Pd8Ni92(110) catalytic surface from first principles. Phys. Rev. B. 76, 125406-1-7 (2007)

    Article  Google Scholar 

  137. Andersson, K.J., Calle-Vallejo, F., Rossmeisl, J., Chorkendorff, I.: Adsorption-driven surface segregation of the less reactive alloy component. J. Am. Chem. Soc. 131, 2404–2407 (2009)

    Article  Google Scholar 

  138. Mayrhofer, K.J.J., Juhart, V., Hartl, K., Hanzlik, M., Arenz, M.: Adsorbate-induced surface segregation for core-shell nanocatalysts. Angew. Chem. Int. Ed. 48, 3529–3531 (2009)

    Article  Google Scholar 

  139. Mayrhofer, K.J.J., Hartl, K., Juhart, V., Arenz, M.: Degradation of carbon-supported Pt bimetallic nanoparticles by surface segregation. J. Am. Chem. Soc. 131, 16348–16349 (2009)

    Article  Google Scholar 

  140. Papaefthimiou, V., Dintzer, T., Dupuis, V., Tamion, A., Tournus, F., Teschner, D., Hävecker, M., Knop-Gericke, A., Schlögl, R., Zafeiratos, S.: When a metastable oxide stabilizes at the nanoscale: wurtzite CoO formation upon dealloying of PtCo nanoparticles. J. Phys. Chem. Lett. 2, 900–904 (2011)

    Article  Google Scholar 

  141. Zhou, S., Yin, H., Schwartz, V., Wu, Z., Mullins, D., Eichhorn, B., Overbury, S.H., Dai, S.: In situ phase separation of NiAu alloy nanoparticles for preparing highly active Au/NiO CO oxidation catalysts. ChemPhysChem 9, 2475–2479 (2008)

    Article  Google Scholar 

  142. Hansgen, D.A., Vlachos, D.G., Chen, J.G.: Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction. Nat. Chem. 2, 484–489 (2010)

    Article  Google Scholar 

  143. Studt, F., Abild-Pedersen, F., Bligaard, T., Sorensen, R.Z., Christensen, C.H., Nørskov, J.K.: Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 320, 1320–1322 (2008)

    Article  Google Scholar 

  144. Linic, S., Jankowiak, J., Barteau, M.A.: Selectivity driven design of bimetallic ethylene epoxidation catalysts from first principles. J. Catal. 224, 489–493 (2004)

    Article  Google Scholar 

  145. Piccinin, S., Zafeiratos, S., Stampfl, C., Hansen, T.W., Hävecker, M., Teschner, D., Bukhtiyarov, V.I., Girgsdies, F., Knop-Gericke, A., Schlögl, R., Scheffler, M.: Alloy catalyst in a reactive environment: the example of Ag–Cu particles for ethylene epoxidation. Phys. Rev. Lett. 104, 035503 (2010)

    Article  Google Scholar 

  146. Nilekar, A.U., Alayoglu, S., Eichhorn, B., Mavrikakis, M.: Preferential CO oxidation in hydrogen: reactivity of core−shell nanoparticles. J. Am. Chem. Soc. 132, 7418–7428 (2010)

    Article  Google Scholar 

  147. Quinet, E., Piccolo, L., Morfin, F., Avenier, P., Diehl, F., Caps, V., Rousset, J.L.: On the mechanism of hydrogen-promoted gold-catalyzed CO oxidation. J. Catal. 268, 384–389 (2009)

    Article  Google Scholar 

  148. Alayoglu, S., Nilekar, A.U., Mavrikakis, M., Eichhorn, B.: Ru–Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater. 7, 333–338 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

I greatly acknowledge my colleagues Dr. Claude Descorme and Dr. Christophe Geantet for critical reading of the manuscript and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Piccolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Piccolo, L. (2012). Surface Studies of Catalysis by Metals: Nanosize and Alloying Effects. In: Alloyeau, D., Mottet, C., Ricolleau, C. (eds) Nanoalloys. Engineering Materials. Springer, London. https://doi.org/10.1007/978-1-4471-4014-6_11

Download citation

Publish with us

Policies and ethics