Skip to main content

VR for Medical Training

  • Chapter

Abstract

There are several benefits of applying VR technology to medicine. VR is more comprehensive than books and cadavers. It is also time and case independent, as the users can train and repeat medical skills at any time they want. Surgeons can practice treatments in extreme situations without taking a risk for the patient, as no patients are directly involved. Procedures are observable and reproducible, and performance can be recorded and used for assessment or evaluation of the treatment. Moreover, augmented information can be displayed to assist the treatment or decision making. Medical applications can benefit from VR in several areas. VR in medicine aims to optimize cost, improve quality of the education and therapy, allow long and efficient training sessions, and increase safety.

The major advantage of VR-based training is that an interactive and engaging setting enables an operator to learn through a first-person experience. Tasks are represented, which would be dangerous, expensive, or even infeasible to undertake in a real setting.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alhalabi, M.O., Daniulaitis, V., Kawasaki, H., Hori, T.: Medical training simulation for palpation of subsurface tumor using hiro. In: Proceedings of the First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 623–624. IEEE Computer Society, Washington (2005)

    Chapter  Google Scholar 

  2. Bachofen, D., Zatonyi, J., Harders, M., Szekely, G., Fruh, P., Thaler, M.: Enhancing the visual realism of hysteroscopy simulation. Stud. Health Technol. Inform. 119, 31–36 (2006)

    Google Scholar 

  3. Basdogan, C., Sedef, M., Harders, M., Wesarg, S.: VR-Based simulators for training in minimally invasive surgery. IEEE Comput. Graph. Appl. 27(2), 54–66 (2007). ISI Impact Factor 1.429

    Article  Google Scholar 

  4. Berkley, J., Turkiyyah, G., Berg, D., Ganter, M., Weghorst, S.: Real-time finite element modeling for surgery simulation: an application to virtual suturing. IEEE Trans. Vis. Comput. Graph. 10(3), 314–325 (2004). doi:10.1109/TVCG.2004.1272730

    Article  Google Scholar 

  5. Brett, P.N., Parker, T.J., Harrison, A.J., Thomas, T.A., Carr, A.: Simulation of resistance forces acting on surgical needles. Proc. Inst. Mech. Eng. Part H, J. Eng. Med. 211(4), 335–347 (1997)

    Article  Google Scholar 

  6. Burdea, G., Coiffet, P.: Virtual Reality Technology. Wiley, New York (1993)

    Google Scholar 

  7. Burdea, G., Patounakis, G., Popescu, V., Weiss, R.E.: Virtual reality-based training for the diagnosis of prostate cancer. IEEE Trans. Biomed. Eng. 46(10), 1253–1260 (1999). doi:10.1109/10.790503

    Article  Google Scholar 

  8. Coles, T., John, N.W., Gould, D.A., Caldwell, D.G.: Haptic palpation for the femoral pulse in virtual interventional radiology. In: Advances in Computer-Human Interactions, 2009. ACHI ’09. Second International Conferences on, pp. 193–198 (2009). doi:10.1109/ACHI.2009.61

    Chapter  Google Scholar 

  9. Coles, T.R., Meglan, D., John, N.W.: The role of haptics in medical training simulators: a survey of the state of the art. IEEE Trans. Haptics 4(1), 51–66 (2011). doi:10.1109/TOH.2010.19

    Article  Google Scholar 

  10. Cunningham, R.L., Feldman, P., Feldman, B., Merril, G.L.: Interface device and method for interfacing instruments to vascular access simulation systems (2002). Google Patents. US Patent 6,470,302

    Google Scholar 

  11. Dang, T., Annaswamy, T.M., Srinivasan, M.A.: Development and evaluation of an epidural injection simulator with force feedback for medical training. Med. Meets Virtual Real. 81, 97 (2001)

    Google Scholar 

  12. Dupuis, O., Moreau, R., Silveira, R., Pham, M.T., Zentner, A., Cucherat, M., Rudigoz, R.C., Redarce, T.: A new obstetric forceps for the training of junior doctors: a comparison of the spatial dispersion of forceps blade trajectories between junior and senior obstetricians. Am. J. Obstet. Gynecol. 194(6), 1524–1531 (2006). doi:10.1016/j.ajog.2006.01.013

    Article  Google Scholar 

  13. Dupuis, O., Moreau, R., Pham, M.T., Redarce, T.: Assessment of forceps blade orientations during their placement using an instrumented childbirth simulator. Int. J. Obstet. Gynaecol. 116(2), 327–333 (2009). doi:10.1111/j.1471-0528.2008.02004.x

    Article  Google Scholar 

  14. Färber, M., Heller, J., Hummel, F., Gerloff, C., Handels, H.: Virtual reality based training of lumbar punctures using a 6dof haptic device. In: Buzug, T.M., Holz, D., Bongartz, J., Kohl-Bareis, M., Hartmann, U., Weber, S. (eds.) Advances in Medical Engineering. Springer Proceedings in Physics, vol. 114, pp. 236–240. Springer, Berlin (2007). http://dx.doi.org/10.1007/978-3-540-68764-1_39

    Chapter  Google Scholar 

  15. Frey, M., Burgkart, R., Regenfelder, F., Riener, R.: Optimised robot-based system for the exploration of elastic joint properties. Med. Biol. Eng. Comput. 42(5), 674–678 (2004)

    Article  Google Scholar 

  16. Frey, M., Hoogen, J., Burgkart, R., Riener, R.: Physical interaction with a virtual knee joint-the 9 dof haptic display of the Munich knee joint simulator. Presence: Teleoperators and Virtual Environments 15(5), 570–587 (2006)

    Article  Google Scholar 

  17. Frey, M., Riener, R., Michas, C., Regenfelder, F., Burgkart, R.: Elastic properties of an intact and acl-ruptured knee joint: measurement, mathematical modelling, and haptic rendering. J. Biomech. 39(8), 1371–1382 (2006)

    Article  Google Scholar 

  18. Gorman, P., Krummel, T., Webster, R., Smith, M., Hutchens, D.: A prototype haptic lumbar puncture simulator. Med. Meets Virtual Real. 70, 106 (2000)

    Google Scholar 

  19. Green, P.E., Piantanida, T.A., Hill, J.W., Simon, I.B., Satava, R.M.: Telepresence: dexterous procedures in a virtual operating field. Am. Surg. 57, 192 (1991)

    Google Scholar 

  20. Halvorsen, F.H., Elle, O.J., Fosse, E.: Simulators in surgery. Minim. Invasive Ther. Allied Technol. 14(4–5), 214–223 (2005). doi:10.1080/13645700500243869. http://informahealthcare.com/doi/pdf/10.1080/13645700500243869

    Article  Google Scholar 

  21. Heng, P.A., Wong, T.T., Yang, R., Chui, Y.P., Xie, Y.M., Leung, K.S., Leung, P.C.: Intelligent inferencing and haptic simulation for Chinese acupuncture learning and training. IEEE Trans. Inf. Technol. Biomed. 10(1), 28–41 (2006)

    Article  Google Scholar 

  22. Langrana, N., Burdea, G., Ladeji, J., Dinsmore, M.: Human performance using virtual reality tumor palpation simulation. Comput. Graph. 21(4), 451–458 (1997)

    Article  Google Scholar 

  23. Liu, A., Tendick, F., Cleary, K., Kaufmann, C.: A survey of surgical simulation: applications, technology, and education. Presence: Teleoperators and Virtual Environments 12(6), 599–614 (2003)

    Article  Google Scholar 

  24. Mayooran, Z., Watterson, L., Withers, P., Line, J., Arnett, W., Horley, R.: Mediseus epidural: full-procedure training simulator for epidural analgesia in labour. In: SimTecT Healthcare Simulation Conference 2006 (2006)

    Google Scholar 

  25. Müller, W., Bockholt, U., Lahmer, A., Voss, G., Börner, M.: VRATS—virtual-reality-arthroskopie-trainingssimulator. Radiologe 40(3), 290–294 (2000). doi:10.1007/s001170050671

    Article  Google Scholar 

  26. Panchaphongsaphak, B., Burgkart, R., Riener, R.: Three-dimensional touch interface for medical education. IEEE Trans. Inf. Technol. Biomed. 11(3), 251–263 (2007)

    Article  Google Scholar 

  27. Pham, T., Roland, L., Benson, K.A., Webster, R.W., Gallagher, A.G., Haluck, R.S.: Smart tutor: a pilot study of a novel adaptive simulation environment. Stud. Health Technol. Inform. 111, 385–389 (2005)

    Google Scholar 

  28. Ra, J.B., Kwon, S.M., Kim, J.K., Yi, J., Kim, K.H., Park, H.W., Kyung, K.U., Kwon, D.S., Kang, H.S., Kwon, S.T., et al.: Spine needle biopsy simulator using visual and force feedback. Comput. Aided Surg. 7(6), 353–363 (2002)

    Article  Google Scholar 

  29. Riener, R., Frey, M., Proll, T., Regenfelder, F., Burgkart, R.: Phantom-based multimodal interactions for medical education and training: the Munich knee joint simulator. IEEE Trans. Inf. Technol. Biomed. 8(2), 208–216 (2004)

    Article  Google Scholar 

  30. Satava, R.M.: Virtual reality surgical simulator: the first steps. Surg. Endosc. 7(3), 203–205 (1993)

    Article  Google Scholar 

  31. Sherman, K.P., Ward, J.W., Wills, D.P., Mohsen, A.M.: A portable virtual environment knee arthroscopy training system with objective scoring. Stud. Health Technol. Inform. 62, 335 (1999)

    Google Scholar 

  32. Taffinder, N., Sutton, C., Fishwick, R.J., McManus, I.C., Darzi, A.: Validation of virtual reality to teach and assess psychomotor skills in laparoscopic surgery: results from randomised controlled studies using the mist VR laparoscopic simulator. Stud. Health Technol. Inform. 50, 124–130 (1998)

    Google Scholar 

  33. Tokuyasu, T., Kitamura, T., Sakaguchi, G., Komeda, M.: Development of training system for left ventricular plastic surgery. In: Biomedical Engineering, IEEE EMBS Asian-Pacific Conference on, pp. 60–61 (2003). doi:10.1109/APBME.2003.1302583

    Chapter  Google Scholar 

  34. Trifan, A., Stanciu, C.: Computer-based simulator for training in gastrointestinal endoscopy. Rev. Med.-Chir. Soc. Med. Nat. Iasi 111(3), 567–574 (2007)

    Google Scholar 

  35. Ullrich, S., Mendoza, J., Ntouba, A., Rossaint, R., Kuhlen, T.: Haptic pulse simulation for virtual palpation. Bildverarb. Med. 10, 187–191 (2008)

    Google Scholar 

  36. Vince, J.: Introduction to Virtual Reality. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  37. Vining, D.J., Liu, K., Choplin, R.H., Haponik, E.F.: Virtual bronchoscopy: relationships of virtual reality endobronchial simulations to actual bronchoscopy findings. Chest 109(2), 549 (1996)

    Article  Google Scholar 

  38. Wang, Q., Ou, Y., Xu, Y.: A prototype virtual haptic bronchoscope. In: Intelligent Robots and Systems, IEEE/RSJ International Conference on, vol. 2, pp. 1361–1366 (2002). doi:10.1109/IRDS.2002.1043944

    Chapter  Google Scholar 

  39. Zorcolo, A., Gobbetti, E., Pili, P., Tuveri, M., et al.: Catheter insertion simulation with combined visual and haptic feedback. In: Proceedings of the First Phantom Users Research Symposium. Citeseer, Princeton (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Riener .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Riener, R., Harders, M. (2012). VR for Medical Training. In: Virtual Reality in Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-4011-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4011-5_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4010-8

  • Online ISBN: 978-1-4471-4011-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics