Haptic Aspects


The term haptics originates from the 19th century, where it was used mainly in relation to psychophysics research. It is derived from the Greek word haptikos, which means “able to touch/grasp”. Today it is used to describe all tactile (related to skin deformation), kinesthetic (related to muscle forces) and proprioceptive (related to joint positions) sensations in the body. An important aspect to note about haptics is that it involves both a passive receptive and an active explorative component, thus, requiring bi-directional input and output.


Shape Memory Alloy Force Feedback Virtual Object Haptic Feedback Haptic Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abu-Tair, M., Marshall, A.: An empirical model for multi-contact point haptic network traffic. In: Proceedings of the 2nd International Conference on Immersive Telecommunications, IMMERSCOM ’09, pp. 15:1–15:6. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), Brussels (2009). Google Scholar
  2. 2.
    An, K.N., Askew, L.J., Chao, E.Y.: Biomechanics and functional assessment of upper extremities. In: Trends in Ergonomics/Human Factors III, pp. 573–580 (1986) Google Scholar
  3. 3.
    Besio, W.G., Fasiuddin, M., Patwardhan, R.: Medical devices for the detection, prevention and/or treatment of neurological disorders, and methods related thereto, October (2005). US Patent App. 11/252,043 Google Scholar
  4. 4.
    Bicchi, A., Raugi, M., Rizzo, R., Sgambelluri, N.: Analysis and design of an electromagnetic system for the characterization of magneto-rheological fluids for haptic interfaces. IEEE Trans. Magn. 41(5), 1876–1879 (2005). doi: 10.1109/TMAG.2005.846280 CrossRefGoogle Scholar
  5. 5.
    Bouzit, M., Burdea, G., Popescu, G., Boian, R.: The rutgers master ii-new design force-feedback glove. IEEE/ASME Trans. Mechatron. 7(2), 256–263 (2002) CrossRefGoogle Scholar
  6. 6.
    Brewster, S.A., Wall, S.A., Brown, L.M., Hoggan, E.E.: Tactile displays. In: The Engineering Handbook of Smart Technology for Aging, Disability, and Independence, pp. 339–352 (2008) CrossRefGoogle Scholar
  7. 7.
    Briot, S., Arakelian, V., Guégan, S.: PAMINSA: a new family of partially decoupled parallel manipulators. Mech. Mach. Theory 44(2), 425–444 (2009) CrossRefMATHGoogle Scholar
  8. 8.
    Bro-Nielsen, M.: Finite element modelling in surgery simulation. Proc. IEEE 86(3), 490–503 (1998) CrossRefGoogle Scholar
  9. 9.
    CAE: CAE Endoscopy VR simulator. CAE Healtcare Inc. (2010)
  10. 10.
    Caldwell, D.G., Lawther, S., Wardle, A.: Multi-modal cutaneous tactile feedback. In: Intelligent Robots and Systems, Proceedings of the 1996 IEEE/RSJ International Conference on, pp. 465–472 (1996) Google Scholar
  11. 11.
    Chouvardas, V.G., Miliou, A.N., Hatalis, M.K.: Tactile displays: a short overview and recent developments. In: ICTA ’05: Proceedings of Fifth International Conference on Technology and Automation, pp. 246–251 (2005) Google Scholar
  12. 12.
    Clavel, R.: Device for displacing and positioning an element in space. WIPO Patent, WO 87/03528 (1987) Google Scholar
  13. 13.
    Coles, T., John, N.W., Gould, D.A., Caldwell, D.G.: Haptic palpation for the femoral pulse in virtual interventional radiology. In: Advances in Computer-Human Interactions, 2009. ACHI ’09. Second International Conferences on, pp. 193–198 (2009). doi: 10.1109/ACHI.2009.61 CrossRefGoogle Scholar
  14. 14.
    Coles, T.R., Meglan, D., John, N.W.: The role of haptics in medical training simulators: a survey of the state of the art. IEEE Trans. Haptics 4(1), 51–66 (2011). doi: 10.1109/TOH.2010.19 CrossRefGoogle Scholar
  15. 15.
    Colgate, E., Hogan, N.: An analysis of contact instability in terms of passive physical equivalents. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Scottsdale, AZ, USA, pp. 404–409 (1989) Google Scholar
  16. 16.
    Colgate, J.E.: The control of dynamically interacting systems. PhD thesis, MIT Department of Mechanical Engineering (1988) Google Scholar
  17. 17.
    Colgate, J.E., Schenkel, G.: Passivity of a class of sampled-data systems: application to haptic interfaces. J. Robot. Syst. 14(1), 37–47 (1997) CrossRefGoogle Scholar
  18. 18.
    Dahiya, R.S., Metta, G., Valle, M., Sandini, G.: Tactile sensing: from humans to humanoids. IEEE Trans. Robot. 26(1), 1–20 (2010) CrossRefGoogle Scholar
  19. 19.
    Deetjen, P., Speckmann, E.-J.: Physiologie. Urban und Schwarz, München (1994) Google Scholar
  20. 20.
    Deetjen, P., Speckmann, E.J., Hescheler, J.: Physiologie, 4th edn. Elsevier, Urban und Fischer Verlag, München (2005) Google Scholar
  21. 21.
    Delingette, H.: Toward realistic soft-tissue modeling in medical simulation. Proc. IEEE 86(3), 512–523 (1998) CrossRefGoogle Scholar
  22. 22.
    Deutsch, J.E., Lewis, J.A., Burdea, G.: Technical and patient performance using a virtual reality-integrated telerehabilitation system: preliminary finding. IEEE Trans. Neural Syst. Rehabil. Eng. 15(1), 30–35 (2007). doi: 10.1109/TNSRE.2007.891384 CrossRefGoogle Scholar
  23. 23.
    Dollar, A.M., Herr, H.: Active orthoses for the lower-limbs: challenges and state of the art. In: Proceedings of the IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 968–977 (2007). doi: 10.1109/ICORR.2007.4428541 Google Scholar
  24. 24.
    Durlach, N.I., Mavor, A.S.: Virtual Reality: Scientific and Technological Challenges. National Academies Press, Washington (1995) Google Scholar
  25. 25.
    Dworkin, P., Zeltzer, D.: A new model for efficient dynamic simulation. In: Proceedings of the Eurographics Workshop on Animation and Simulation, pp. 135–147 (1993) Google Scholar
  26. 26.
    Emery, C., Samur, E., Lambercy, O., Bleuler, H., Gassert, R.: Haptic/vr clinical assessment tool for fine motor control. In: Proceeding Eurohaptics 2010, pp. 186–193 (2010) Google Scholar
  27. 27.
    Esen, H., Sachsenhauser, A., Yano, K., Buss, M.: A multi-user virtual training system concept and objective assessment of trainings. In: Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 1084–1089 (2007). doi: 10.1109/ROMAN.2007.4415242 Google Scholar
  28. 28.
    Faller, S., Schünke, M.: Der Körper des Menschen. Einführung in Bau und Funktion, 14th edn. Georg Thieme Verlag, Stuttgart (2004) Google Scholar
  29. 29.
    Famaey, N., Vander Sloten, J.: Soft tissue modelling for applications in virtual surgery and surgical robotics. Comput. Methods Biomech. Biomed. Eng. 11(4), 351–366 (2008) CrossRefGoogle Scholar
  30. 30.
    Fluet, M.-C., Lambercy, O., Gassert, R.: Upper limb assessment using a virtual peg insertion test. In: Proceeding: IEEE International Conference on Rehabilitation Robotics (ICORR) (2011) Google Scholar
  31. 31.
    Fritschi, M., Ernst, M.O., Buss, M.: Integration of kinesthetic and tactile display—a modular design concept. In: Proceedings of the EuroHaptics 2006 (2006) Google Scholar
  32. 32.
    Goldstein, E.B.: Wahrnehmungspsychologie: Der Grundkurs, 7th edn. Springer, Berlin (2008) Google Scholar
  33. 33.
    Gough, V.E.: Contribution to discussion of papers on research in automobile stability, control and tyre performance. Proc. Inst. Mech. Eng., Auto Div. 171, 392–395 (1956–1957) Google Scholar
  34. 34.
    Hesse, S., Schmidt, H., Werner, C., Bardeleben, A.: Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Curr. Opin. Neurol. 16(6), 705–710 (2003) CrossRefGoogle Scholar
  35. 35.
    Heuser, A., Kourtev, H., Winter, S., Fensterheim, D., Burdea, G., Hentz, V., Forducey, P.: Telerehabilitation using the rutgers master ii glove following carpal tunnel release surgery: proof-of-concept. IEEE Trans. Neural Syst. Rehabil. Eng. 15(1), 43–49 (2007). doi: 10.1109/TNSRE.2007.891393 CrossRefGoogle Scholar
  36. 36.
    Hogan, N.: Impedance control: An approach to manipulation. Part I—Theory, Part II—Implementation, Part III—Applications. ASME J. Dyn. Syst. Meas. Control 107, 1–24 (1985) CrossRefMATHGoogle Scholar
  37. 37.
    Howe, R.D., Peine, W.J., Kantarinis, D.A., Son, J.S.: Remote palpation technology. IEEE Eng. Med. Biol. Mag. 14(3), 318–323 (1995). doi: 10.1109/51.391770 CrossRefGoogle Scholar
  38. 38.
    Hubens, G., Coveliers, H., Balliu, L., Ruppert, M., Vaneerdeweg, W.: A performance study comparing manual and robotically assisted laparoscopic surgery using the da Vinci system. Surg. Endosc. 17(10), 1595–1599 (2003) CrossRefGoogle Scholar
  39. 39.
    Hwang, S.L., Barfield, W., Chang, T.C., Salvendy, G.: Integration of humans and computers in the operation and control of flexible manufacturing systems. Int. J. Prod. Res. 22(5), 841–856 (1984) CrossRefGoogle Scholar
  40. 40.
    Inoue, H., Tsusaka, Y., Fukuizumi, T.: Parallel manipulator. In: Proc 3rd ISRR, Gouvieux, France (1985) Google Scholar
  41. 41.
    Iwata, H., Yano, H., Nakaizumi, F., Kawamura, R.: Project feelex: adding haptic surface to graphics. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 469–476. ACM, New York (2001) Google Scholar
  42. 42.
    Jack, D., Boian, R., Merians, A.S., Tremaine, M., Burdea, G.C., Adamovich, S.V., Recce, M., Poizner, H.: Virtual reality-enhanced stroke rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 9(3), 308–318 (2001). doi: 10.1109/7333.948460 CrossRefGoogle Scholar
  43. 43.
    Jandura, L., Srinivasan, M.A.: Experiments on human performance in torque discrimination and control. Dyn. Syst. Control 1, 369 (1994) Google Scholar
  44. 44.
    Johnson, D.E., Willemsen, P., Cohen, E.: Six degree-of-freedom haptic rendering using spatialized normal cone search. IEEE Trans. Vis. Comput. Graph. 11(6), 661–670 (2005). doi: 10.1109/TVCG.2005.106 CrossRefGoogle Scholar
  45. 45.
    Kajimoto, H., Kawakami, N., Tachi, S., Inami, M.: SmartTouch: electric skin to touch the untouchable. IEEE Comput. Graph. Appl. 24(1), 36–43 (2004) CrossRefGoogle Scholar
  46. 46.
    Kong, X., Gosselin, C.: Type synthesis of parallel mechanisms. In: Springer Tracts in Advanced Robotics, vol. 33. Springer, Berlin (2007) Google Scholar
  47. 47.
    Kontarinis, D.A., Howe, R.D.: Tactile display of vibratory information in teleoperation and virtual environments. Presence: Teleoperators and Virtual Environments 4(4), 387–402 (1995) Google Scholar
  48. 48.
    Koo, I.M., Jung, K., Koo, J.C., Nam, J.-D., Lee, Y.K., Choi, H.R.: Development of soft-actuator-based wearable tactile display. IEEE Trans. Robot. 24(3), 549–558 (2008) CrossRefGoogle Scholar
  49. 49.
    Kühnapfel, U., Kuhn, C., Hubner, M., Krumm, H.G., Maass, H., Neisius, B.: The Karlsruhe endoscopic surgery trainer as an example for virtual reality in medical education. Minim. Invasive Ther. Allied Technol. 6(2), 122–125 (1997) CrossRefGoogle Scholar
  50. 50.
    Lederman, S.J., Klatzky, R.L.: Hand movement: a window into haptic object recognition. Cogn. Psychol. 19(3), 342–368 (1987) CrossRefGoogle Scholar
  51. 51.
    Lim, I., Van Wegen, E., De Goede, C., Deutekom, M., Nieuwboer, A., Willems, A., Jones, D., Rochester, L., Kwakkel, G.: Effects of external rhythmical cueing on gait in patients with Parkinson’s disease: a systematic review. Clin. Rehabil. 19(7), 695 (2005) CrossRefGoogle Scholar
  52. 52.
    Liu, Y., Davidson, R., Taylor, P.: Touch sensitive electrorheological fluid based tactile display. Smart Mater. Struct. 14, 1563–1568 (2005) CrossRefGoogle Scholar
  53. 53.
    Meier, U., López, O., Monserrat, C., Juan, M.C., Alcañiz, M.: Real-time deformable models for surgery simulation: a survey. Comput. Methods Programs Biomed. 77(3), 183–197 (2005). doi: 10.1016/j.cmpb.2004.11.002 CrossRefGoogle Scholar
  54. 54.
    Merians, A.S., Fluet, G.G., Qiu, Q., Saleh, S., Lafond, I., Davidow, A., Adamovich, S.V.: Robotically facilitated virtual rehabilitation of arm transport integrated with finger movement in persons with hemiparesis. J. NeuroEng. Rehabil. 8(1), 1–10 (2011). doi: 10.1186/1743-0003-8-27 CrossRefGoogle Scholar
  55. 55.
    Merlet, J.-P., Gosselin, C.: In: Siciliano, B., Khatib, O. (eds.) Springer Handbook on Robotics, pp. 269–285. Springer, Berlin (2008) CrossRefGoogle Scholar
  56. 56.
    Merrett, G.V., Metcalf, C.D., Zheng, D., Cunningham, S., Barrow, S., Demain, S.H.: Design and qualitative evaluation of tactile devices for stroke rehabilitation. In: IET Assisted Living (2011) Google Scholar
  57. 57.
    Miyazaki, S., Ueno, J., Yasuda, T., Yokoi, S., Torikawi, J.: A study of virtual manipulation of elastic objects with destruction. In: Proceedings of the IEEE International Workshop on Robot and Human Communication, pp. 26–31 (1996) Google Scholar
  58. 58.
    Moore, P., Molloy, D.: A survey of computer-based deformable models. In: Machine Vision and Image Processing Conference, 2007. IMVIP 2007. International, pp. 55–66 (2007). doi: 10.1109/IMVIP.2007.31 Google Scholar
  59. 59.
    Morgenbesser, H.B., Srinivasan, M.A.: Force shading for haptic shape perception. ASME Proc. Dyn. Syst. Control Div. 58, 407–412 (1996) Google Scholar
  60. 60.
    Morioka, M., Whitehouse, D.J., Griffin, M.J.: Vibrotactile thresholds at the fingertip, volar forearm, large toe, and heel. Somatosens. Motor Res. 25(2), 101–112 (2008) CrossRefGoogle Scholar
  61. 61.
    Moy, G., Wagner, C., Fearing, R.S.: A compliant tactile display for teletaction. In: Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE International Conference on, vol. 4, pp. 3409–3415. IEEE, New York (2000) Google Scholar
  62. 62.
    Nealen, A., Müller, M., Keiser, R., Boxerman, E., Carlson, M.: Physically based deformable models in computer graphics. In: Computer Graphics Forum. Wiley Online Library, vol. 25, pp. 809–836 (2006) Google Scholar
  63. 63.
    Nikitczuk, J., Weinberg, B., Mavroidis, C.: Rehabilitative knee orthosis driven by electro-rheological fluid based actuators. In: Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on, pp. 2283–2289 (2005). doi: 10.1109/ROBOT.2005.1570453 CrossRefGoogle Scholar
  64. 64.
    Piegl, L.A., Tiller, W.: The NURBS Book. Springer, Berlin (1997) CrossRefGoogle Scholar
  65. 65.
    Riener, R., Quintern, J., Schmidt, G.: Biomechanical model of the human knee evaluated by neuromuscular stimulation. J. Biomech. 29(9), 1157–1167 (1996) CrossRefGoogle Scholar
  66. 66.
    Rizzo, R., Sgambelluri, N., Scilingo, E.P., Raugi, M., Bicchi, A.: Electromagnetic modeling and design of haptic interface prototypes based on magnetorheological fluids. IEEE Trans. Magn. 43(9), 3586–3600 (2007). doi: 10.1109/TMAG.2007.901351 CrossRefGoogle Scholar
  67. 67.
    Ruspini, D.C., Kolarov, K., Khatib, O.: The haptic display of complex graphical environments. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’97, pp. 345–352. ACM Press/Addison-Wesley Publishing Co., New York (1997). doi: 10.1145/258734.258878 CrossRefGoogle Scholar
  68. 68.
    Salisbury, K., Tarr, C.: Haptic rendering of surfaces defined by implicit functions. In: Proceedings of the ASME 6th Annual Symposium on Haptic Interfaces for Virtual Environment and Teleoperator System, pp. 61–68 (1997) Google Scholar
  69. 69.
    Schmidt, R.F., Thews, G.: Die Physiologie des Menschen. Springer, Berlin (1990) Google Scholar
  70. 70.
    Schostek, S., Schurr, M.O., Buess, G.F.: Review on aspects of artificial tactile feedback in laparoscopic surgery. Med. Eng. Phys. 31(8), 887–898 (2009) CrossRefGoogle Scholar
  71. 71.
    Sgambelluri, N., Scilingo, E.P., Bicchi, A., Rizzo, R., Raugi, M.: Advanced modeling and preliminary psychophysical experiments for a free-hand haptic device. In: Proc. IEEE/RSJ Int. Conf. on Robots and Intelligent Systems—IROS06, pp. 1558–1563 (2006) Google Scholar
  72. 72.
    Shinohara, M., Shimizu, Y., Mochizuki, A.: Three-dimensional tactile display for the blind. IEEE Trans. Rehabil. Eng. 6(3), 249–256 (1998). doi: 10.1109/86.712218 CrossRefGoogle Scholar
  73. 73.
    Siciliano, O., Khatib, B. (eds.): Handbook of Robotics. Springer, Berlin (2008) MATHGoogle Scholar
  74. 74.
    Sledd, A.: Performance enhancement of a haptic arm exoskeleton. In: Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2006 14th Symposium on, pp. 375–381 (2006) CrossRefGoogle Scholar
  75. 75.
    Stewart, D.: A platform with six degrees of freedom. Proc. Inst. Mech. Eng. 180, 371–385 (1965–66) CrossRefGoogle Scholar
  76. 76.
    Sung, G.T., Gill, I.S.: Robotic laparoscopic surgery: a comparison of the da Vinci and Zeus systems. Urology 58(6), 893–898 (2001) CrossRefGoogle Scholar
  77. 77.
    Sutter, P.H., Iatridis, J.C., Thakor, N.V.: Response to Reflected-Force Feedback to Fingers in Teleoperations. In: Proceedings of the NASA Conference on Space Telerobotics (1989) Google Scholar
  78. 78.
    Tan, H.Z., Pang, X.D., Durlach, N.I.: Manual resolution of length, force, and compliance. Adv. Robot. 42, 13–18 (1992) Google Scholar
  79. 79.
    Tan, H.Z., Srinivasan, M.A., Eberman, B., Cheng, B.: Human factors for the design of force-reflecting haptic interfaces. Dyn. Syst. Control 55(1), 353–359 (1994) Google Scholar
  80. 80.
    Thompson, T.V. II, Cohen, E.: Direct haptic rendering of complex trimmed NURBS models. In: Proceeding ACM SIGGRAPH 2005 Courses, pp. 89–96 (2005). doi: 10.1145/1198555.1198609 CrossRefGoogle Scholar
  81. 81.
    Thompson, T.V. II, Johnson, D.E., Cohen, E.: Direct haptic rendering of sculptured models. In: Proceedings of the 1997 Symposium on Interactive 3D Graphics, pp. 167–176 (1997). doi: 10.1145/253284.253336 CrossRefGoogle Scholar
  82. 82.
    Ueberle, M., Mock, N., Buss, M.: Design, control, and evaluation of a hyper-redundant haptic device. In: Ferre, M., Buss, M., Aracil, R., Melchiorri, C., Balaguer, C. (eds.) Advances in Telerobotics. Springer Tracts in Advanced Robotics, vol. 31, pp. 25–44. Springer, Berlin (2007). CrossRefGoogle Scholar
  83. 83.
    Van der Linde, R.Q., Lammertse, P., Frederiksen, E., Ruiter, B.: The HapticMaster, a new high-performance haptic interface (2002) Google Scholar
  84. 84.
    van Eijden, T.M., Weijs, W.A., Kouwenhoven, E., Verburg, J.: Forces acting on the patella during maximal voluntary contraction of the quadriceps femoris muscle at different knee flexion/extension angles. Acta Anat. 129(4), 310–314 (1987) CrossRefGoogle Scholar
  85. 85.
    Vischer, P., Clavel, R.: Kinematic calibration of the parallel delta robot. Robotica 16(02), 207–218 (1998) CrossRefGoogle Scholar
  86. 86.
    Wang, Q., Hayward, V.: Tactile synthesis and perceptual inverse problems seen from the viewpoint of contact mechanics. ACM Trans. Appl. Percept. 5(2), 7 (2008) CrossRefGoogle Scholar
  87. 87.
    Wang, Q., Hayward, V.: Biomechanically optimized distributed tactile transducer based on lateral skin deformation. Int. J. Robot. Res. 29(4), 323–335 (2009) CrossRefGoogle Scholar
  88. 88.
    Weinstein, S.: Intensive and extensive aspects of tactile sensitivity as a function of body part, sex, and laterality. In: Kenshalo, D.R. (ed.) The Skin Senses, Springfield, IL, pp. 195–218 (1968) Google Scholar
  89. 89.
    Winter, D.A.: Biomechanics and Motor Control of Human Movement, 3rd edn. Wiley, New York (1990) Google Scholar
  90. 90.
    Zilles, C.B., Salisbury, J.K.: A constraint-based god-object method for haptic display. In: Intelligent Robots and Systems ‘Human Robot Interaction and Cooperative Robots’, Proceedings. 1995 IEEE/RSJ International Conference on, vol. 3. Chicago, IL, USA, pp. 146–151 (1995) CrossRefGoogle Scholar
  91. 91.
    Zimmermann, M.: Mechanoreceptors of the glaborous skin and tactile acuity. In: Studies in Neurophysiology Presented to A.K., p. 267. Cambridge University Press, Cambridge (1978) Google Scholar
  92. 92.
    Zotterman, Y.: Sensory Functions of the Skin in Primates. Pergamon, Oxford (1976) Google Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  1. 1.Sensory-Motor Systems Lab ETH ZurichUniversity Hospital BalgristZürichSwitzerland
  2. 2.Computer Vision LabETH ZurichZürichSwitzerland

Personalised recommendations