Skip to main content

Soft Tissue Deformation

  • Chapter
Virtual Reality in Medicine

Abstract

The computation of soft tissue behavior is a central topic of biomedical simulation. Numerous methods to model soft tissue have been proposed in the past. The key tradeoff to be considered is usually the real-time capability vs. the deformation accuracy. This tradeoff relates to the targeted application. Scientific analysis of biomedical material and instruments, for instance for the design of new products, requires a high level of accuracy. Thus, in this context offline calculations of high computational cost are usually required. In contrast to this, in surgical planning the requirements can be relaxed. This allows to increase the interactivity of planning systems, while the overall precision is reduced. This is usually accepted, since input data—such as the organ mechanical properties of a specific patient—are often not, or only approximately known. Finally, VR-based surgical simulation requires real-time updates of the computed scene. Therefore, the accuracy of deformations can often only be roughly approximated. This is referred to in the field as the computation of physically-plausible behavior. A point to consider in this context is the goal of a surgical simulation: in general the target is to achieve a training effect. This might not require a highly accurate reproduction of minute details of material behavior. Nevertheless, it is still an unsolved research question how realistic a deformation model has to be in a surgical simulator to achieve a certain training effect. Still, large inaccuracies in tissue behavior can potentially lead to negative training effects. Therefore, the selection of an appropriate deformation model is a key step in building a simulation system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baraff, D., Witkin, A.: Large steps in cloth simulation. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques vol. 32, pp. 43–54 (1998)

    Google Scholar 

  2. Basdogan, C., Ho, C.-H., Srinivasan, M.A., Small, S.D., Dawson, S.L.: Force interactions in laparoscopic simulations: haptic rendering of soft tissues. In: Proceedings of the Medicine Meets Virtual Reality Conference, pp. 385–391 (1998)

    Google Scholar 

  3. Bathe, K.J.: Finite Element Procedures. Prentice Hall, New York (1996)

    Google Scholar 

  4. Baur, C., Guzzoni, D., Georg, O.: VIRGY: a virtual reality and force feedback based endoscopic surgery simulator. In: Westwood, J.D., Hoffman, H.M., Stredney, D., Weghorst, S.J. (eds.) Medicine Meets Virtual Reality Art, Science, Technology: Healthcare (R)evolution, pp. 110–116 (1998)

    Google Scholar 

  5. Beeman, D.: Some multistep methods for use in molecular dynamics calculations. J. Comput. Phys. 20(2), 130–139 (1976)

    Article  Google Scholar 

  6. Belytschko, T., Krongauz, V., Organ, D., Fleming, M., Krysl, P.: Meshless methods: an overview and recent developments. Comput. Methods Appl. Mech. Eng. 139(1–4), 3–47 (1996)

    Article  MATH  Google Scholar 

  7. Bianchi, G., Solenthaler, B., Szekely, G., Harders, M.: Simultaneous topology and stiffness identification for mass-spring models based on fem reference deformations. In: Medical Image Computing and Computer-Assisted Intervention MICCAI 2004, vol. 2, pp. 293–301 (2004)

    Chapter  Google Scholar 

  8. Bielser, D.: A framework for open surgery simulation. PhD thesis, Department of Computer Science, ETH Zürich (2003)

    Google Scholar 

  9. Brebbia, C.A.: The Boundary Element Method for Engineers. Pentech Press, London (1978)

    Google Scholar 

  10. Bro-Nielsen, M., Cotin, S.: Real-time volumetric deformable models for surgery simulation using finite elements and condensation. Comput. Graph. Forum 15(3), 57–66 (1996)

    Article  Google Scholar 

  11. Cook, R.D., Malkus, D.S., Plesha, M.E., Witt, R.J.: Concepts and Applications of Finite Element Analysis. Wiley, New York (2002)

    Google Scholar 

  12. Costa, I.F., Balaniuk, R.: LEM-an approach for real time physically based soft tissue simulation. In: International Conference on Robotics and Automation, vol. 3, pp. 2337–2343 (2001)

    Google Scholar 

  13. Cotin, S., Delingette, H., Ayache, N.: A hybrid elastic model allowing real-time cutting, deformations and force-feedback for surgery training and simulation. Vis. Comput. 16(8), 437–452 (2000)

    Article  MATH  Google Scholar 

  14. De, S., Bathe, K.J.: The method of finite spheres. Comput. Mech. 25(4), 329–345 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. De, S., Lim, Y.-J., Manivannan, M., Srinivasan, M.A.: Physically realistic virtual surgery using the point-associated finite field (paff) approach. Presence 15(3), 294–308 (2006)

    Article  Google Scholar 

  16. Delingette, H.: Towards realistic soft tissue modeling in medical simulation. In: Proceedings of the IEEE, pp. 512–523 (1998)

    Google Scholar 

  17. Desbrun, M., Schröder, P., Barr, A.: Interactive animation of structured deformable objects. In: Proceedings of the 1999 Conference on Graphics Interface ’99, pp. 1–8 (1999)

    Google Scholar 

  18. Deussen, O., Kobbelt, L., Tücke, P.: Using simulated annealing to obtain good nodal approximations of deformable bodies. In: Sixth Eurographics Workshop on Simulation and Animation (1995)

    Google Scholar 

  19. Felippa, C.A., Clough, R.W.: The finite element method in solid mechanics. In: Numerical Solution of Field Problems in Continuum Physics, pp. 210–252. SIAM-AMS, Providence (1969)

    Google Scholar 

  20. Gibson, S.F.: 3D ChainMail: a fast algorithm for deforming volumetric objects. In: Proceedings of the 1997 Symposium on Interactive 3D Graphics, pp. 149–154 (1997)

    Chapter  Google Scholar 

  21. Gibson, S.F., Mirtich, B.: A survey of deformable modeling in computer graphics. Technical Report TR97-19, MERL—Mitsubishi Electric Research Laboratories, Cambridge, USA (1997)

    Google Scholar 

  22. Gladilin, E., Zachow, S., Deuflhard, P., Hege, H.C.: A biomechanical model for soft tissue simulation in craniofacial surgery. In: Medical Imaging and Augmented Reality (MIAR), pp. 137–141 (2001)

    Google Scholar 

  23. James, D., Pai, D.K.: A united treatment of elastostatic and rigid contact simulation for real time haptics. Haptics-e 2(1) (2001)

    Google Scholar 

  24. James, D.L., Pai, D.K.: ArtDefo—accurate real time deformable objects. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 65–72 (1999)

    Google Scholar 

  25. Jeong, I.K., Lee, I.H.: An oriented particles and generalized spring model for fast prototyping deformable objects. In: Eurographics 2004 (2004)

    Google Scholar 

  26. Lloyd, B., Szekely, G., Harders, M.: Identification of spring parameters for deformable object simulation. IEEE Trans. Vis. Comput. Graph. 13(5), 1081–1094 (2007)

    Article  Google Scholar 

  27. Mal, A.K., Singh, S.J.: Deformation of Elastic Solids, p. 341. Prentice-Hall, New York (1990)

    Google Scholar 

  28. Malvern, L.E.: Introduction to the Mechanics of a Continuous Medium, p. 713. Prentice-Hall, New York (1969)

    Google Scholar 

  29. Monserrat, C., Meier, U., Alcañiz, M., Chinesta, F., Juan, M.C.: A new approach for the real-time simulation of tissue deformations in surgery simulation. Comput. Methods Programs Biomed. 64(2), 77–85 (2001)

    Article  Google Scholar 

  30. Montgomery, K., Bruyns, C., Brown, J., Thonier, G., Tellier, A., Latombe, J.-C.: Spring: a general framework for collaborative, real-time surgical simulation. In: Medicine Meets Virtual Reality (2001)

    Google Scholar 

  31. Nealen, A., Müller, M., Keiser, R., Boxerman, E., Carlson, M.: Physically based deformable models in computer graphics (state of the art report). In: Proc. Eurographics 2005, pp. 71–94 (2005)

    Google Scholar 

  32. Newmark, N.M.: A method of computation for structural dynamics. ASCE J. Eng. Mech. 85(EM3), 67–94 (1959)

    Google Scholar 

  33. Ogden, R.W.: Non-linear Elastic Deformations. Dover Publications, New York (1997)

    Google Scholar 

  34. Park, J., Kim, S.-Y., Son, S.-W., Kwon, D.-S.: Shape retaining chain linked model for real-time volume haptic rendering. In: Proceedings of the 2002 IEEE Symposium on Volume Visualization and Graphics, pp. 65–72 (2002)

    Chapter  Google Scholar 

  35. Picinbono, G., Delingette, H., Ayache, N.: Real-time large displacement elasticity for surgery simulation: non-linear tensor-mass model. In: Medical Image Computing and Computer-Assisted Intervention, pp. 643–652 (2000)

    Google Scholar 

  36. Picinbono, G., Delingette, H., Ayache, N.: Non-linear and anisotropic elastic soft tissue models for medical simulation. In: IEEE International Conference Robotics and Automation, vol. 2, pp. 1370–1375 (2001)

    Google Scholar 

  37. Tendick, F., Downes, M., Goktekin, T., Cavusoglu, M.C., Feygin, D., Wu, X., Eyal, R., Hegarty, M., Way, L.W.: A virtual environment testbed for training laparoscopic surgical skills. Presence 9, 236–255 (2000)

    Article  Google Scholar 

  38. Terzopoulos, D., Fleischer, K.: Modeling inelastic deformation: viscolelasticity, plasticity, fracture. Comput. Graph. 22, 269–278 (1988)

    Article  Google Scholar 

  39. Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, vol. 21, pp. 205–214 (1987)

    Google Scholar 

  40. Teschner, M., Heidelberger, B., Mueller, M., Gross, M.: A versatile and robust model for geometrically complex deformable solids. In: Computer Graphics International 2004, pp. 312–319 (2004)

    Chapter  Google Scholar 

  41. Van Gelder, A.: Approximate simulation of elastic membranes by triangulated spring meshes. J. Graph. Tools 3(2), 21–42 (1998)

    Article  Google Scholar 

  42. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method. McGraw-Hill, New York (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Riener .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Riener, R., Harders, M. (2012). Soft Tissue Deformation. In: Virtual Reality in Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-4011-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4011-5_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4010-8

  • Online ISBN: 978-1-4471-4011-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics