Skip to main content

Intravascular Ultrasound for Venous Stenting and Inferior Vena Cava Filter Insertion

  • Chapter
  • First Online:
Noninvasive Vascular Diagnosis
  • 2857 Accesses

Abstract

Presently venous intravascular ultrasound (IVUS) is mainly used to diagnose venous stenosis, to guide stenting of venous obstruction, and to assist in placement of IVC filters. IVUS visualizes the vessel from inside the lumen outward and penetrates the adjacent structures. It gives the full 360° view of the crosscut vessel lumen, the character of the luminal wall, and possible external compression. For appropriate coverage of the entire lumen in the ilio-caval system, an ultrasound frequency of ∼12.5 MHz or lower is necessary. The disposable IVUS catheter rides usually coaxially on a guidewire placed in the vein percutaneously. After advancing the IVUS catheter to a level above the area of interest, images are obtained during catheter withdrawal through the lumen and digitally stored.

The diagnosis of ilio-caval outflow obstruction must ultimately be made by morphological investigations, preferably IVUS. The use of IVUS in these patients has the dual purpose of accurately diagnosing the degree, extent, and nature of obstruction and aiding in appropriate placement of the stent. Stenting can be performed without venography, using only IVUS in combination with fluoroscopy.

There has also been a transition from placement of IVC filters in the interventional suite under fluoroscopy with venography to an IVUS-guided bedside deployment. The use of IVUS is obviously beneficial in patients with contraindications to iodinated contrast dye or limitations of radiation exposure. It also decreases the radiation exposure for the interventionalist. Morbidly obese patients may exceed the weight limits of the angiographic table. Prophylactic IVC filters are increasingly placed in critically ill and multiple trauma patients. To transport these ICU patients to an interventional suite is cumbersome.

The cost of the technology has hampered widespread use, but it can be expected that the costs for the equipment will decrease with increased utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nishanian G, Kopchok GE, Donayre CE, White RA. The impact of intravascular ultrasound (IVUS) on endovascular interventions. Semin Vasc Surg. 1999;12:285–99.

    PubMed  CAS  Google Scholar 

  2. Neglén P, Raju S. Balloon dilation and stenting of chronic iliac vein obstruction: technical aspects and early clinical outcome. J Endovasc Ther. 2000;7:79–91.

    Article  PubMed  Google Scholar 

  3. Neglén P, Berry MA, Raju S. Endovascular surgery in the treatment of chronic primary and post-thrombotic iliac vein obstruction. Eur J Vasc Endovasc Surg. 2000;20:560–71.

    Article  PubMed  Google Scholar 

  4. Raju S, Owen Jr S, Neglén P. The clinical impact of iliac venous stents in the management of chronic venous insufficiency. J Vasc Surg. 2002;35:8–15.

    PubMed  Google Scholar 

  5. Raju S, McAllister S, Neglén P. Recanalization of totally occluded iliac and adjacent venous segments. J Vasc Surg. 2002;36:903–11.

    Article  PubMed  Google Scholar 

  6. Juhan C, Hartung O, Alimi Y, Barthelemy P, Valerio N, Portier F. Treatment of nonmalignant obstructive iliocaval lesions by stent placement: mid-term results. Ann Vasc Surg. 2001;15:227–32.

    Article  PubMed  CAS  Google Scholar 

  7. Nazarian GK, Austin WR, Wegryn SA, et al. Venous recanalization by metallic stents after failure of balloon angioplasty or surgery: four-year experience. Cardiovasc Intervent Radiol. 1996;19:227–33.

    Article  PubMed  CAS  Google Scholar 

  8. Blattler W, Blattler IK. Relief of obstructive pelvic venous symptoms with endoluminal stenting. J Vasc Surg. 1999;29:484–8.

    Article  PubMed  CAS  Google Scholar 

  9. Hurst DR, Forauer AR, Bloom JR, Greenfield LJ, Wakefield TW, Williams DM. Diagnosis and endovascular treatment of iliocaval compression syndrome. J Vasc Surg. 2001;34:106–13.

    Article  PubMed  CAS  Google Scholar 

  10. Neglén P, Raju S. Proximal lower extremity chronic venous outflow obstruction: recognition and treatment. Semin Vasc Surg. 2002;15: 57–64.

    Article  PubMed  Google Scholar 

  11. Neglén P, Hollis KC, Olivier J, Raju S. Stenting of the venous outflow in chronic venous disease: long-term stent-related outcome, clinical, and hemodynamic result. J Vasc Surg. 2007;46:979–90.

    Article  PubMed  Google Scholar 

  12. Neglén P, Raju S. Intravascular ultrasound scan evaluation of the obstructed vein. J Vasc Surg. 2002;35:694–700.

    Article  PubMed  Google Scholar 

  13. Forauer AR, Gemmete JJ, Dasika NL, Cho KJ, Williams DM. Intravascular ultrasound in the diagnosis and treatment of iliac vein compression (May-Thurner) syndrome. J Vasc Interv Radiol. 2002;13:523–7.

    Article  PubMed  Google Scholar 

  14. Satokawa H, Hoshino S, Iwaya F, Igari T, Midorikawa H, Ogawa T. Intravascular imaging methods for venous disorders. Int J Angiol. 2000;9:117–21.

    Article  PubMed  Google Scholar 

  15. Hingorani A, Alhabouni S, Ascher E, et al. Role of IVUS versus venograms in assessment of iliac-femoral vein stenosis. J Vasc Surg. 2011;52:804.

    Article  Google Scholar 

  16. Neglén P, Raju S. In-stent recurrent stenosis in stents placed in the lower extremity venous outflow tract. J Vasc Surg. 2004;39:181–7.

    Article  PubMed  Google Scholar 

  17. Cockett FB, Thomas ML, Negus D. Iliac vein compression. Its relation to iliofemoral thrombosis and the post-thrombotic syndrome. Br Med J. 1967;2:14–9.

    Article  PubMed  CAS  Google Scholar 

  18. Negus D, Fletcher EW, Cockett FB, Thomas ML. Compression and band formation at the mouth of the left common iliac vein. Br J Surg. 1968;55:369–74.

    Article  PubMed  CAS  Google Scholar 

  19. Raju S, Neglén P. High prevalence of nonthrombotic iliac vein lesions in chronic venous disease: a permissive role in pathogenicity. J Vasc Surg. 2006;44:136–43.

    Article  PubMed  Google Scholar 

  20. Ahmed HK, Hagspiel KD. Intravascular ultrasonographic findings in May-Thurner syndrome (iliac vein compression syndrome). J Ultrasound Med. 2001;20:251–6.

    PubMed  CAS  Google Scholar 

  21. Neglén P, Tackett Jr TP, Raju S. Venous stenting across the inguinal ligament. J Vasc Surg. 2008;48:1255–61.

    Article  PubMed  Google Scholar 

  22. Sato DT, Robinson KD, Gregory RT, et al. Duplex directed caval filter insertion in multi-trauma and critically ill patients. Ann Vasc Surg. 1999;13:365–71.

    Article  PubMed  CAS  Google Scholar 

  23. Aidinian G, Fox CJ, White PW, Cox MW, Adams ED, Gillespie DL. Intravascular ultrasound – guided inferior vena cava filter placement in the military multitrauma patients: a single-center experience. Vasc Endovascular Surg. 2009;43:497–501.

    Article  PubMed  Google Scholar 

  24. Killingsworth CD, Taylor SM, Patterson MA, et al. Prospective implementation of an algorithm for bedside intravascular ultrasound-guided filter placement in critically ill patients. J Vasc Surg. 2010;51:1215–21.

    Article  PubMed  Google Scholar 

  25. Rosenthal D, Wellons ED, Levitt AB, Shuler FW, O’Conner RE, Henderson VJ. Role of prophylactic temporary inferior vena cava filters placed at the ICU bedside under intravascular ultrasound guidance in patients with multiple trauma. J Vasc Surg. 2004;40:958–64.

    Article  PubMed  Google Scholar 

  26. Kassavin DS, Constantinopoulos G. The transition to IVUS-guided IVC filter deployment in the nontrauma patient. Vasc Endovascular Surg. 2011;45:142–5.

    Article  PubMed  Google Scholar 

  27. Joels CS, Sing RF, Heniford BT. Complications of inferior vena cava filters. Am Surg. 2003;69:654–9.

    PubMed  Google Scholar 

  28. Oppar WP, Chiou AC, Matsumura JS. Intravascular ultrasound-guided vena cava filter placement. J Endovasc Ther. 1999;6:285–7.

    Google Scholar 

  29. Matsuura JH, White RA, Kopchok G, et al. Vena caval filter placement by intravascular ultrasound. Cardiovasc Surg. 2001;9:571–4.

    Article  PubMed  CAS  Google Scholar 

  30. Passman MA, Dattilo JB, Guzman RJ, Naslund TC. Bedside placement of inferior vena cava filters by using transabdominal duplex ultrasonography and intravascular ultrasound imaging. J Vasc Surg. 2005;42:1027–32.

    Article  PubMed  Google Scholar 

  31. Jacobs DL, Motaganahalli RL, Peterson BG. Bedside vena cava filter placement with intravascular ultrasound: a simple, accurate, single venous access method. J Vasc Surg. 2007;46:1284–6.

    Article  PubMed  Google Scholar 

  32. Passman MA. Regarding “bedside vena cava filter placement with intravascular ultrasound: a simple, accurate, single venous access method”. J Vasc Surg. 2008;48:257.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Neglén M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Neglén, P. (2013). Intravascular Ultrasound for Venous Stenting and Inferior Vena Cava Filter Insertion. In: AbuRahma, A., Bandyk, D. (eds) Noninvasive Vascular Diagnosis. Springer, London. https://doi.org/10.1007/978-1-4471-4005-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4005-4_43

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4004-7

  • Online ISBN: 978-1-4471-4005-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics