Skip to main content

Ontogenetic Development of the Protein Composition of the Right and Left Ventricular Myocardium

  • Chapter
Right Ventricular Hypertrophy and Function in Chronic Lung Disease

Part of the book series: Current Topics in Rehabilitation ((CURRENT REHAB))

Abstract

The postnatal development of the cardiac muscle represents a broad spectrum of morphological, biochemical and physiological changes; ultimately it is a set of cellular and subcellular adaptations to new physiological conditions. Cardiac development in the prenatal period is characterized by a spontaneous but declining cell proliferation,1 accumulation of different enzymes occasioned by increased aerobic metabolism,2,3 increase in the number of myocytes and mitochondria, and maturation of various cell organelles 4It is well established that postnatal development of the cardiac muscle occurs primarily by cellular hypertrophy due to enhanced protein synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bugaisky L., Zak R.: Cellular growth of cardiac muscle after birth. Tex. Rep. Biol. 1979; 39:123–138

    Google Scholar 

  2. Baldwin K.M., Cooke D.A., Cheadle W.G.: Enzyme alteration in neonatal heart muscle during development. J. mol. Cell. Cardiol. 1977; 9: 651–660

    Article  PubMed  CAS  Google Scholar 

  3. Friedman W.F.: The intrinsic physiologic properties of the developing heart. Progress in Cardiovasc. Diseases 1972; 15: 87–111

    CAS  Google Scholar 

  4. Anversa P., Ricci R., Olivetti G.: Quantitative structural analysis of the myocardium during physiologic growth and induced cardiac hypertrophy: A review. J. Am. Coll. Cardiol. 1986; 7: 1140–1149

    Article  PubMed  CAS  Google Scholar 

  5. Mc Darmott P., Daoot M., Klein I.: Contraction regulates myosin content of cultured heart cells. Am. J. Physiol. 1985; 249: 763–769

    Google Scholar 

  6. Morgan H.E., Chua B.H.L., Fuller E.O., Siehl D.: Regulation of protein synthesis and degradation during in vitro cardiac work. Am. J. Physiol. 1980; ( Endocrinol. Met. ) 431–442

    Google Scholar 

  7. Rakusan K.: Cardiac growth, maturation and aging. In: Zak R. (Ed.) Growth of the heart in health and diseases. New York, Raven 1984; 131–164

    Google Scholar 

  8. Engelmann G L, Gerrity R.G.: Biochemical characterization of neonatal cardiomyocyte development in normotensive and hypertensive rats. J. Mol. Cell. Cardiol. 1988; 20: 169–177

    Article  PubMed  CAS  Google Scholar 

  9. Massey K.D., Burton K.P.: Alpha-tocopherol attenuated myocardial membrane-related alteration resulting from ischemia and reperfusion: Am. J. Physiol. 1989; 256: 1192–1199

    Google Scholar 

  10. Bricknell O.L., Opie L.H.: Effect of substrates on tissue metabolic changes in isolated rat heart during underperfusion and on release of lactate dehydrogenase and arrythmias during reperfusion. Circ. Res. 1978; 43: 102–115

    Article  PubMed  CAS  Google Scholar 

  11. Pelouch V., Ostadal B., Prochazka J.: The ontogenetic development of ATPase activity in the right and left ventricle of the rat heart. Physiol. bohemoslov 1978; 27: 268

    Google Scholar 

  12. Fulton R.M., Hutchinson R.M., Jones A.M.: Ventricular weight in cardiac hypertrophy. British Heart J. 1952; 14: 413–420

    Article  CAS  Google Scholar 

  13. World Heath Organization: Chronic cor pulmonale: Report of an expert committee: Technical Report Series No 213. WHO Geneva 1962

    Google Scholar 

  14. Pelouch V., Deyl Z., Ostadal B., Wachtlova M.: Protein profiling in heart muscle. Physiol. bohemoslovaca 1984; 33: 278–279

    Google Scholar 

  15. Lowry O.H., Rosebrough N.J., Farr A.L.: Protein measurement with Folin Phenol reagent. J. biol. Chem., 1951; 193: 265–273

    PubMed  CAS  Google Scholar 

  16. Delcayre C., Swynghedauw B.: A comparative study of heart myosin ATPase and light subunits from different species. Pflugers Arch., 1975; 255: 39–47

    Article  Google Scholar 

  17. Huszar G.: Monitoring of collagen and collagen fragments in chromatography of protein mixtures. Anal. Biochem. 1980; 105: 424–429

    Article  PubMed  CAS  Google Scholar 

  18. Levitsky D.O., Aliev M.K., Kuzmin A.V., Levchenko T.S., Smirnov V.N., Chazov E.I.: Isolation of calcium pump system and purification of calcium ion dependent ATPase from heart muscle. Biochimica et Biophysica Acta, 1976; 443: 468–484

    PubMed  CAS  Google Scholar 

  19. Lebedev A.V., Sadretinov S.M., Pelouch V., Prochazka J., Levitsky D.O., Ostadal B Free radical membrane scavengers in myocardium of rats of different age exposed to chronic hypoxia. Biomed. Biochim Acta 1989; 48: 122–125

    Google Scholar 

  20. Schrieber S.S., Rothschild M.A., Evans C., Reff F., Oratz Z.: The effect of pressure or flow stress on right ventricular protein synthesis in the face of constant and restricted coronary perfusion. J. Clin. Invest. 1975; 55: 1–11

    Article  Google Scholar 

  21. Jajil J.E., Doering C.W., Janicki J.S., Pick R., Shroff S.G., Weber K.: Fibrillar collagen and myocardial stiffness in the intact hypertrophied rat left ventricle. Cir. Res. 1989; 64: 1041–1050

    Article  Google Scholar 

  22. Perry S.V.: The regulation of contractile activity in muscle. Bioch. Soc. Transaction 1976; 7: 593–617

    Google Scholar 

  23. Swynghedauw B.: Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Physiol. Rev. 1986; 710–771

    Google Scholar 

  24. Medugorac I.: Alteration in myosin substructure and myofibrillar ATPase activity in rat myocardium during development and after work overload. Hoppe-Seylers Z.f. Physiol. 1979; 360: 326–330

    Google Scholar 

  25. Watras J.: Changes in rat cardiac during development and in cure. J. mol. cell. Cardiol. 1981; 113: 1011–1021

    Article  Google Scholar 

  26. Hoh J.F.Y., McGrath P.A., White R.I.: Electrophoretic analysis of multiple forms of rat cardiac myosin: Effect of hypophysectomy and thyroxin. J. mol. cell. Cardiol. 1978; 10: 1053–1076

    Article  PubMed  CAS  Google Scholar 

  27. Lompre A.M., Schwartz K., De Albis A., Lacombe G., VanThien N., Swynghedauw B.: Myosin isoenzyme redistribution in chronic heart overload. Nature 1979; 282: 5–12

    Article  Google Scholar 

  28. Brooks W.W., Bing O.H.L., Blaustein A.S., Allen P.D.: Comparison of contractile state and myosin isoenzymes of rat right and left ventricular myocardium. J. mol. cell. cardiol. 1987; 19: 433–440

    Article  PubMed  CAS  Google Scholar 

  29. Bandman E.: Myosin isoenzyme transitions in muscle development, maturation, and disease. International Rev. Cytol. 1985; 97: 97–131

    Article  CAS  Google Scholar 

  30. Pelouch V., Ostadal B., Urbanova D., Prochazka J., Ressl J., Widimsky J.: Effect of intermittent high altitude hypoxia on the structure and enzymatic activity of cardiac myosin. Physiol. bohemoslov. 1980; 29: 313–322

    PubMed  CAS  Google Scholar 

  31. Barany M.: ATPase activity of myosin correlated with speed of muscle shortening. J. gen. Physiol. 1967; 50: 197–218

    Article  PubMed  Google Scholar 

  32. Ostadal B., Prochazka J., Pelouch V., Urbanova D., Widimsky J.: Comparison of cardiopulmonary responses of male and female rats to intermittent high altitude hypoxia. Physiol. bohemoslov. 1984; 33: 129–138

    PubMed  CAS  Google Scholar 

  33. Humhreys J., Cummins P.: Regulatory proteins of the myocardium. Atrial and ventricular tropomyosin and troponin in the developing and adult bovine and human heart. J. mol. cell. Cardiol. 1984; 16: 643–657

    Article  Google Scholar 

  34. Humphreys J., Cummins P.: Regulatory proteins of the myocardium. Atrial and ventricular tropomyosin and troponin % in the developing and adult bovine and human heart. J. Mol. Cell Cardiol. 1984; 16: 643–657

    Article  PubMed  CAS  Google Scholar 

  35. Toyota N., Shimada Y.: Differentiation of troponin in cardiac and skeletal muscle in chicken embryos as studied by immunofluorescence microscopy. J. cell. Biol. 1981; 91: 497–504

    Article  PubMed  CAS  Google Scholar 

  36. Dhoot G.K., Perry S.V., Vrbova G.: Changes in the distribution of components of the troponin complex. Exp. Neurol. 1981; 72: 513–530

    Article  PubMed  CAS  Google Scholar 

  37. Tada M., Katz A.M.: Phoshorylation of the sarcoplasmic reticulum and sarcolemma. Annu. Rev. Physiol. 1982; 44: 401–433

    Article  PubMed  CAS  Google Scholar 

  38. Krause E-G., Will H., Pelouch V., Wollenberger A.: Cyclic AMP-dependent protein kinase activity in a cell membrane enriched subcellular fraction of pig myocardium. Acta Biol. Med. Germ. 1973; 31: 37–43

    Google Scholar 

  39. Levitsky D.O., Syrbu S.I., Cherepakhin V., Rokhlin O.V.: Mononuclear antibodies to dog heart sarcoplasmic reticulum. Europ. J. Biochem. 1987

    Google Scholar 

  40. Naraysanan N.: Comparison of ATP-dependent calcium transport and calcium activated ATPase activities of cardiac sarcoplasmic reticulum and sarcolemma from rats of various ages. Mechanisms of Ageing and development 1987; 38: 127–143

    Article  Google Scholar 

  41. Pegg W., Michalak M.: Differentiation of sarcoplasmic reticulum during cardiac myogenesis. Am. J. Physiol. 252 ( Heart Circ. Physiol. ) 1987; 22–31

    Google Scholar 

  42. Michalak M.: Identification of Ca-release activity and ryanodine receptor in sarcoplasmicreticulum membranes during cardiac myogenesis. Biochem. J. 1988; 253: 631–636

    PubMed  CAS  Google Scholar 

  43. Will H., Kuttner I., Vetter R., Will-Shahab L., Kemsies Ch.: Early presence of phosholamban in developing chick heart. FEBS letters. 1983; 155: 326–330

    Article  PubMed  CAS  Google Scholar 

  44. Chamberlain B.K., Levitsky D.O., Fleischner S.: Isolation and characterization of canine cardiac sarcoplasmic reticulum with improved Ca-transport properties. J. Biol. Chem. 1983; 258: 6602–6609

    PubMed  CAS  Google Scholar 

  45. Chien K.B., Han A., Sen L., Buja L.M., Willerson J.T.: Accumulation of unesterified arachidonic acid in ischemic canine myocardium: relationship to a phosphatidylcholine deacylation cycle and the depletion of membrane phosholipids. Circ. Res. 1984; 54: 313–322

    Article  PubMed  CAS  Google Scholar 

  46. Lucy J.A.: Functional and structural aspects of biological membranes: a suggested structural role of vitamin E in control of membrane permeability and stability. Ann. NY Acad. Sci. 1972; 203: 411

    Google Scholar 

  47. Alpert N.R., Mullieri L.A.: Increased myothermal economy of isometric force generation in compensated cardiac hypertrophy induced by pulmonary artery constriction in the rabbit. Circ. Res. 1982; 50: 491–500

    Article  PubMed  CAS  Google Scholar 

  48. Weber K., Cardiac interstitium in health and disease: The fibrillar collagen network. J. Am. Coll. Cardiol. 1989; 13: 1637–1652

    Article  PubMed  CAS  Google Scholar 

  49. Ostadal B., Mirejovska E., Hurych J., Pelouch V., Prochazka J.: Effect of intermittent high altitude hypoxia on the synthesis of collagenous and non-collagenous proteins of the right and left ventricular myocardium. Cardiovascular Res. 1978; 12: 303–308

    Article  CAS  Google Scholar 

  50. Eghbali M., Czaja M.J., Zedel M., Weiner F.R., Zern M.A., Seifter S., Blumenfeld O.O.: Collagen chain mRNAs in isolated heart cells from young and adult rats. J. mol. cell. cardiol. 1988; 20:267–276

    Article  PubMed  CAS  Google Scholar 

  51. Zak R.: Development and proliferative capacity of cardiac muscle cells. Circ. Revs. Suppl. II. 1974; 17–26

    Google Scholar 

  52. Pelouch V., Ostadal B., Prochazka J The effect of hypoxia on the structural and enzymatic properties of cardiac myosin. Abhandlungen der Akad. Wissenschaften DDR, 1987; 215–218

    Google Scholar 

  53. Pelouch V., Ostadal B, Prochazka J., Urbanova D., Widimsky J.: Effect of high altitude hypoxia on the protein composition of the right ventricular myocardium in young rats. In: Daum S. (Ed.) Interaction between heart and lung. Stuttgart-New York, Georg Thieme Verlag 1989; 69–72

    Google Scholar 

  54. Medugorac I., Jacob R.: Characterization of left ventricular collagen in the rat. Cardiovasc. Res. 1983; 17: 15–21

    Article  PubMed  CAS  Google Scholar 

  55. Speir E., Yi-Fu Z., Lee M., Shrivastav S., Casscells W.: Fibroblast growth factors are presented in adult cardiac myocytes, in vivo. Biochem. Biophys. Res. Comm. 1988; 157: 1136–1340

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag London

About this chapter

Cite this chapter

Pelouch, V., Milerova, M., Ostadal, B., Prochazka, J. (1992). Ontogenetic Development of the Protein Composition of the Right and Left Ventricular Myocardium. In: Ježek, V., Morpurgo, M., Tramarin, R. (eds) Right Ventricular Hypertrophy and Function in Chronic Lung Disease. Current Topics in Rehabilitation. Springer, London. https://doi.org/10.1007/978-1-4471-3853-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3853-2_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3855-6

  • Online ISBN: 978-1-4471-3853-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics