Biomechanics, Bone Quality and Strength

  • R. Huiskes
  • T. S. Kaastad


Osteoporosis is a biomechanical problem. It is not a problem by itself — on the contrary, osteoporosis gives you less weight to carry around. But osteoporotic bone is less strong than normal bone, and it is only the prospect of a fracture that gives it an undesirable aspect. Fracture is a matter of stress versus strength; hence, it is a biomechanical problem. A fracture will only occur if the force on a bone is higher than its strength, or when its strength is lower than the force it is subjected to. In the case of a hip or a wrist fracture, a super-normal, traumatic impact force is usually involved, and one may wonder whether the bone would not have broken equally well if it was not osteoporotic. But in the case of a vertebral fracture the forces are usually not much higher than normal; the fracture is often spontaneous. Whatever the difference, the principle remains the same: fracture risk is found in the balance of force versus resistance to force; stress versus strength (Fig. 5.1).


Bone Mass Trabecular Bone Cancellous Bone Bone Strength Bone Quality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chavassieux P, Arlot M, Meunier PJ. Clinical use of bone biopsy. In: Marcus M, Feldman D, Kelsey J editors. Osteoporosis. San Diego: Academic Press, 1996;1113–1121.Google Scholar
  2. 2.
    Kanis JA. Osteoporosis. London: Blackwell Healthcare Communications, 1997.Google Scholar
  3. 3.
    Schaffler MB, Choi K, Milgrom C. Aging and bone matrix microdamage accumulation in human compact bone. Bone 1995;17:521–525.PubMedCrossRefGoogle Scholar
  4. 4.
    Mosekilde Li, Mosekilde Le, Danielsen CC. Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. Bone 1987;8:79–85.PubMedCrossRefGoogle Scholar
  5. 5.
    Hodgskinson R, Currey JD. Separate effects of osteoporosis and density on the strength and stiffness of human cancellous bone. Clin Biomech 1993;8:262–268.CrossRefGoogle Scholar
  6. 6.
    van Rietbergen B, Weinans H, Huiskes R, Odgaard A. A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J Biomech 1995;28:69–81.PubMedCrossRefGoogle Scholar
  7. 7.
    Harrigan TP, Jasty M, Mann RW, Harris WH. Limitations of the continuum assumption in cancellous bone. J Biomech 1988;21:269–275.PubMedCrossRefGoogle Scholar
  8. 8.
    Martin RB. Determinants of the mechanical properties of bone. J Biomech 1991;24 (Suppl):S79–88.CrossRefGoogle Scholar
  9. 9.
    Bouxsein ML, Myers ER, Hayes WC. Biomechanics of age-related fractures. In: Marcus M, Feldman D, Kelsey J editors. Osteoporosis. San Diego: Academic Press, 1996: 373–393.Google Scholar
  10. 10.
    Goulet RW, Goldstein SA, Ciarelli ME, Kuhn JL, Brown MB, Feldkamp LA. The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech 1994;27:375–389.PubMedCrossRefGoogle Scholar
  11. 11.
    Odgaard A, Andersen K, Meisen F, Gundersen HJG. A direct method for fast three-dimensional serial reconstruction. J Microsc 1990;159:335–342PubMedCrossRefGoogle Scholar
  12. 12.
    Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M. The direct examination of three-dimensional bone architecture in vitro by computed tomography, J Bone Miner Res 1989;4:3–11.PubMedCrossRefGoogle Scholar
  13. 13.
    Ruegsegger P, Koller B, Muller R. A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int 1996;58:24–29.PubMedCrossRefGoogle Scholar
  14. 14.
    Cowin SC, Mehrabadi M. Identification of the elastic symmetry of bone and other materials. J Biomech 1989;22:503–515.PubMedCrossRefGoogle Scholar
  15. 15.
    van Rietbergen B, Odgaard A, Kabel J, Huiskes R. Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture. J Biomech 1996;29:1653–1657.PubMedGoogle Scholar
  16. 16.
    Kabel J, van Rietbergen B, Dalstra M, Odgaard A, Huiskes R. The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone. J Biomech 1999;32: 673–680.PubMedCrossRefGoogle Scholar
  17. 17.
    Ladd AJ, Kinney JH, Haupt DL, Goldstein SA. Finite-element modelling of trabecular bone: comparison with mechanical testing and determination of tissue modulus. J Orthop Res 1998;16:622–628.PubMedCrossRefGoogle Scholar
  18. 18.
    Odgaard A. Three-dimensional methods for quantification of cancellous bone architecture. Bone 1997;20:315–328.PubMedCrossRefGoogle Scholar
  19. 19.
    Kabel J, Odgaard A, van Rietbergen B, Huiskes R. Connectivity and the elastic properties of cancellous bone. Bone 1999;24:115–120.PubMedCrossRefGoogle Scholar
  20. 20.
    Mosekilde Li, Viidik A, Mosekilde Le. Correlation between the compressive strength of iliac and vertebral trabecular bone in normal individuals. Bone 1985;6:291–295.PubMedCrossRefGoogle Scholar
  21. 21.
    Turner CH, Cowin SC, Rho JY, Ashman RB, Rice JC. The fabric dependence of the orthotropic elastic constants of cancellous bone. J Biomech 1990;23:549–561.PubMedCrossRefGoogle Scholar
  22. 22.
    van Rietbergen B, Odgaard A, Kabel J, Huiskes R. Relationships between bone morphology and bone elastic properties can be accurately quantified using high-resolution computer reconstructions. J Orthop Res 1998;16:23–28.PubMedCrossRefGoogle Scholar
  23. 23.
    Odgaard A, Linde F. The underestimation of Young’s modulus in compressive testing of cancellous bone specimens. J Biomech 1991;24:691–698.PubMedCrossRefGoogle Scholar
  24. 24.
    Keaveny TM, Pinilla TP, Crawford RP, Kopperdahl DL, Lou A. Systematic and random errors in compression testing of trabecular bone. J Orthop Res 1997;15:101–110.PubMedCrossRefGoogle Scholar
  25. 25.
    Kabel J, van Rietbergen B, Odgaard A, Huiskes R. The constitutive relationships of fabric, density and elastic properties in cancellous bone architecture. Bone 1999;25: 481–486.PubMedCrossRefGoogle Scholar
  26. 26.
    van Lenthe GH, Huiskes R. Can the mechanical trabecular bone quality be estimated reliably from mean intercept length or other morphological parameters? In: Pedersen P, Bendsøe MP, editors. Synthesis in Bio-Solid Mechanics. Dordrecht: Kluwer Academic, 1999:349–360.Google Scholar
  27. 27.
    Currey JD. The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J Biomech 1988;21:131–139.PubMedCrossRefGoogle Scholar
  28. 28.
    Choi K, Goldstein SA. A comparison of the fatigue behavior of human trabecular and cortical bone tissue. J Biomech 1992;25:1371–1381.PubMedCrossRefGoogle Scholar
  29. 29.
    Muhender MG, Huiskes R, Versleyen H, Buma P. Osteocyte density and histomorphometric parameters in cancellous bone of the proximal femur in five mammalian species. J Orthop Res 1996;14:972–979.CrossRefGoogle Scholar
  30. 30.
    Burr DB, Turner CH, Naick P, Forwood MR, Ambrosius W, Hasan MS, Pidaparti R. Does microdamage accumulation affect the mechanical properties of bone? J Biomech 1998;31:337–345.PubMedCrossRefGoogle Scholar
  31. 31.
    Fazzalari NL, Forwood MR, Smith K, Manthey BA, Herreen P. Assessment of cancellous bone quality in severe osteoarthrosis: bone mineral density, mechanics, and microdamage. Bone 1998;22:381–388.PubMedCrossRefGoogle Scholar
  32. 32.
    Marcus R. The nature of osteoporosis. In: Marcus M, Feldman D, Kelsey J, editors. Osteoporosis. San Diego: Academic Press, 1996:647–660.Google Scholar
  33. 33.
    Burneil JM, Baylink DJ, Chesnut CH, Mathews MW, Teubner EJ. Bone matrix and mineral abnormalities in postmenopausal osteoporosis. Metabolism 1982;31:1113–1120.CrossRefGoogle Scholar
  34. 34.
    Mori S, Harruff R, Ambrosius W, Burr DB. Trabecular bone volume and microdamage accumulation in the femoral heads of women with and without femoral neck fractures. Bone 1997;21:521–526.PubMedCrossRefGoogle Scholar
  35. 35.
    Riggs B, O’Fallon W, Chao E, Wahner H, Muhs J, Cedel S. Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. N Engl J Med 1990;322:802–809.PubMedCrossRefGoogle Scholar
  36. 36.
    Richards A, Mosekilde Li, Sogaard CH. Normal age-related changes in fluoride content of vertebral trabecular bone-relation to bone quality. Bone 1994;15:21–26.PubMedCrossRefGoogle Scholar
  37. 37.
    Britton JM, Davie MWJ. Mechanical properties of bone from iliac crest and relationship to L5 vertebral bone. Bone 1990;11:21–28.PubMedCrossRefGoogle Scholar
  38. 38.
    Rodan GA. Coupling of bone resorption and formation during bone remodelling. In: Marcus M, Feldman D, Kelsey J, editors. Osteoporosis., San Diego: Academic Press, 1996:647–660.Google Scholar
  39. 39.
    Frost HM. Vital Biomech. Proposed general concepts for skeletal adaptation to mechanical usage. Calcif Tissue Int 1987;45: 145–156.Google Scholar
  40. 40.
    Currey JD. The mechanical adaptation of bones. Princeton: Princeton University Press, 1984.Google Scholar
  41. 41.
    Cowin SC, Moss-Salentijn L, Moss ML. Candidates for the mechanosensory system in bone. J Biomech Engin 1991;113:191–197.CrossRefGoogle Scholar
  42. 42.
    Mullender MG, Huiskes R. A proposal for the regulatory mechanism of Wolffs law. J Orthop Res 1995;13:503–512.PubMedCrossRefGoogle Scholar
  43. 43.
    Dalsky GP, Stocke KS, Ehsani AA, Slatopolsky E, Lee WC, Birge SJ. Weight-bearing exercise training and lumbar bone mineral content in postmenopausal women. Ann Intern Med 1988;108:824–828.PubMedCrossRefGoogle Scholar
  44. 44.
    Mullender MG, van Rietbergen B, Ruegsegger P, Huiskes R. Effect of mechanical set-point of bone cells on mechanical control of trabecular bone architecture. Bone 1998;22:125–131.PubMedCrossRefGoogle Scholar
  45. 45.
    Karlsson MK, Johnell O, Obrant KJ. Is bone mineral density advantage maintained long-term in previous weight lifters? Calcif Tissue Int 1995;57:325–328.PubMedCrossRefGoogle Scholar
  46. 46.
    Heinonen A, Oja P, Kannus P, Sievanen H, Haapasalo H, Manttari A, Vuori I. Bone mineral density in female athletes representing sports with different loading characteristics of the skeleton. Bone 1995;17:197–203.PubMedCrossRefGoogle Scholar
  47. 47.
    van Lenthe GH, van den Bergh J, Hermus A, Huiskes R. The prospects of estimating the trabecular-bone tissue properties from ultrasound, micro-CT and micro-FEA. Transact 45th ORS 1999;24:570.Google Scholar
  48. 48.
    Muller R, van Campenhout H, van Damme B, vander Perre G, Dequeker J, Hildebrand T, Ruegsegger P. Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computer tomography. Bone 1998;23:59–66.PubMedCrossRefGoogle Scholar
  49. 49.
    Hodgskinson J, Currey JD. Young’s modulus, density and material properties in cancellous bone over a large density range. J Mat Sci Mat Med 1992;3:377–381.CrossRefGoogle Scholar
  50. 50.
    Yang G, Kabel J, van Rietbergen B, Odgaard A, Huiskes R, Cowin SC. The anisotropic Hooke’s Law for cancellous bone and wood. J Elasticity 1999: 53:125–146.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2000

Authors and Affiliations

  • R. Huiskes
  • T. S. Kaastad

There are no affiliations available

Personalised recommendations