Skip to main content

Processes Involving Spray Surface Impact

  • Chapter

Abstract

Crop protection and fertilization are important to the efficiency of agricultural production. With a constantly growing world population applying pesticides to crops is considered to be indispensable in order to guarantee the supply of food. The technology of crop protection uses spray nozzles for an even distribution of atomized liquid onto the plants. The chemicals to be sprayed can be subdivided into herbicides, fungicides, insecticides, liquid fertilizers and bio-regulators. Improper application in agriculture, however, can cause severe environmental contamination. This necessitates the use of precise and high quality spray equipment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anon, Agricultural Pesticide Sprayers, Volume 1 and 2, Food and Agriculture Organization of the United Nations, Rome 1998.

    Google Scholar 

  2. Schulze, L., Grisso, R. and Stougaard, R., Spray Drift of Pesticides, Cooperative Extension, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, 1996, http://www.ianr.unl.edu/pubs/pesticides/gl001.htm.

    Google Scholar 

  3. Stahli W., Sisteme actuale de aplicare prin stropire a tratamentelor fitosanitaresi a ingrasamintelor lichide in legumicultura, Banat University of. Agriculture of Science and Vet. Medicine, Timisoara, 1998.

    Google Scholar 

  4. Ghate, S.P. and Perry, C.D., Ground speed control of pesticide application rates in a compressed air direct injection sprayer, Transactions of American Society of Agricultural Engineers, 37, 1, 33–38, 1994.

    Google Scholar 

  5. Clausen, N.E., Frießleben, R. and Gröner, H., Articles in Mitteilungen der Deutschen Phytomedizinischen Gesellschaft e.V., 28, Jahrgang 3, 1998.

    Google Scholar 

  6. Frießleben, R., Einfluss von applikationstechnik auf die biologische Wirksamkeit von Pflanzenschutzmitteln, Tagung des Arbeitskreises Pflanzenschutztechnik, Aventis-Cropscience, Hattersheim, 2000, http://dpg.phytomedizin.org/ak/09/friessl.htm.

    Google Scholar 

  7. Hatta, N., Fujimoto, H. and Takuda, H., Journal of Fluids Engineering, Transactions of ASME, 117, 394–401, 1995.

    Article  Google Scholar 

  8. Stadler, R., Strathmann, S., Saur, R. and Landfried, M., Qualitätsbeurteilung der applikation, vergleich biologischer u. analytischer auswertemethoden, tagung des arbeitskreises pflanzenschutztechnik, Aventis-Cropscience, Hattersheim, 2000 http://dpg.phytomedizin.org/ak/09/ak_9pub.htm.

    Google Scholar 

  9. Pape, J., Einsatz von fungiziden mit luftfahrzeugen, Mitteilungen der Deutschen Phytomedizinischen Gesellschaft e.V., 29. Jahrgang 2, 1999.

    Google Scholar 

  10. Onken, A., “Aerial Spraying for Gypsy Moth Control: A Handbook of Technology”, USDA Forest Service, Morgantown, WV, http://www.fsl.wvnet.edu /NAonline/gm_news38/how_to/how_to.html, July 2000.

  11. Kansas Educational Program for Aerial Application, Kansas State University Agricultural Experiment Station and Cooperative Extensive Service, October 1997.

    Google Scholar 

  12. Matthews, G.A., Electrostatic spraying of pesticides: a review, Crop Protection, 3–15, Feb. 1989.

    Google Scholar 

  13. Kabashima, J., Giles, D.K. and Parrella, M.P., Electrostatic sprayers improve pesticide efficacy in greenhouses, California Agriculture, July-August 1995.

    Google Scholar 

  14. Eckert, S. and Moser, E., Mitteilungen aus der Biologischen Bundesanstalt für Pflanzenschutz, 223, 115–116, 1984.

    Google Scholar 

  15. Moser, E., Schmidt, K. and Hussain, D., Besserer Pflanzenschutz mit elektrostatischer aufladung, Parts 1 and 2, DLG-Mitteilungen, 8, 1982.

    Google Scholar 

  16. Moser, E., Ganzelmeier, H., Schmidt, K., Einflussfaktoren bei der Anlagerung elektrostatisch geladener Spritzflüssigkeiten im chemischen Pflanzenschutz, Nachrichtenblatt Deutscher Pflanzenschutz (Braunschweig) 33, 1982.

    Google Scholar 

  17. Griffiths, D.C., Cayley, G.P., Etheridge, P., Goodchild, P.J., Hulme, P.J., Lewthwaite, R.J., Pye, B.J., Scott, <i>G.C.</i> and Stevenson, J.H., Application of insecticides, fungicides and herbicides to cereals with charged rotary atomization, British Crop Protection Council — Pests and Diseases, Conference, Brighton Metropole, UK, 1984.

    Google Scholar 

  18. Moser, E., Ganzelmeier, H. and Schmidt, K., Das anlagerungsverhalten elektrostatisch geladener Spritzflüssigkeiten in flächen- und raumkulturen, Nachrichtenblatt Deutscher Pflanzenschutz (Braunschweig), 34, 1982.

    Google Scholar 

  19. Bendig, L., Crop protection nozzles and spray drift — Overview and new

    Google Scholar 

  20. Nozzle Selection Handbook, British Crop Protection Council 1990.

    Google Scholar 

  21. A Anon, Nozzle Selection Handbook, British Crop Protection Council, 1990.

    Google Scholar 

  22. ISO 10625 Sprayer Nozzles — Color Coding for Identification.

    Google Scholar 

  23. ISO 10626 Connecting Dimensions for Nozzles with Bayonet Fixing.

    Google Scholar 

  24. The Airtec Advantage, Cleanacres Machinery Ltd., Cheltenham, UK.

    Google Scholar 

  25. The Girojet Technique, Tecnoma, Epernay, France.

    Google Scholar 

  26. ISO 5682–1 Test Methods of Sprayer Nozzles.

    Google Scholar 

  27. ISO 5682–2 Test Methods for Hydraulic Sprayers.

    Google Scholar 

  28. ISO 5682–3 Test Method for Hectare Adjustment Systems of Agricultural Hydraulic Pressure Sprayers.

    Google Scholar 

  29. Butler E.M.C., Tuck, C.P. and Miller, P.C.H., The effect of some adjuvants on sprays produced by agricultural flat fan nozzles, Crop Protection, 16, 1, 41–50, 1997.

    Article  Google Scholar 

  30. Ganzelmeier, G., Messung der direkten abdrift beim ausbringen von flüssigen Pflanzenschutzmitteln im Freiland, Richtlinien für die Prüfung von Pflanzenschutzgeräten, Part VII, Biologische Bundesanstalt für Land- und Forstwirtschaf, Sept. 1992.

    Google Scholar 

  31. Helck, C. and Herbst, A., Nachrichtenbl. Deut. Pflanzenschutzd., 50, 9, 225–232, 1998.

    Google Scholar 

  32. Butler E.M.C. and Tuck, C.P., Crop Protection, 18, 101–109, 1999.

    Article  Google Scholar 

  33. Lee, S.K., Liu, C.Y., Wong, Y.W. and Sim, H.B., Effect of nozzle design on the growth of some tropical vegetables on aeroponic systems in the tropics, Proc. Int. Conf. Agrotechnology in the Commonwealth, Focus for the 21st Century, Singapore Institute of Biology, May 1994.

    Google Scholar 

  34. Hummer, J.S., Automated tank cleaning in the pulp and paper industry, Paper Asia, 14, 12, 26–28, 1998.

    Google Scholar 

  35. Ueda, K., Tank washing of chemical tanker, Senpaku Gijutsu Kenkyujo Hokoku , 28, 3, 1–39, 1991.

    Google Scholar 

  36. Watanabe, K. and Fujisawa, K., Development of the integrated system for cleaning small tanks for petroleum products and liquid chemicals with jet cleaning units and for waste disposal, Bulletin of Japan Petroleum Institute, 16, 1, 1974.

    Article  Google Scholar 

  37. Hylton, T.D. and Cummins, R.L., Chem. Eng. Comm., 161, 89–10, 1997.

    Article  Google Scholar 

  38. A Anon, Washing Machines, The Motor Ship, July 1997.

    Google Scholar 

  39. Jones, M.P.O. and Bond, J., Chemical Eng. Res. and Design, 63, 6, 383–389, 1985.

    Google Scholar 

  40. Hirst, D.J. and Hegedus, C.P., Metal Finishing, 85, 5, 21–24, 1987.

    Google Scholar 

  41. Smith, C.A., Anti-Corrosion Methods and Materials, 31, 11, 9–11, 1984.

    Article  Google Scholar 

  42. Sohr, J.M. and Thorpe, M.L., Aerospace Eng., 13, 3, 19–23, 1993.

    Google Scholar 

  43. Schneider, J., European Production Eng., 18 , 3–4, 8–31, 1994.

    Google Scholar 

  44. Stower, I.F., J. Vacuum. Sci. Technology. 15, 2, 751–754, 1978.

    Google Scholar 

  45. Connon, H.A. and Wolff, M.C., Designing your cleaning process to meet new challenges, Proc. of the Technical Program — National Electronics Packaging and Product, 177–191, Des Plaines, IL, USA, 1987.

    Google Scholar 

  46. Eliott, D.A. and Gileta, J., In-line high pressure solvent cleaning of surface mounted assemblies, part II, Proc. of the Technical Program — National Electronics Packaging and Product, 717–723, Des Plaines, IL, USA , 1987.

    Google Scholar 

  47. Musselmann, R.P. and Yarbrough, T.W., The fluid dynamics of cleaning under surface mounted PWA’S and hybrids, Proc. of the Technical Program — National Electronics Packaging and Product, 207–220, Des Plaines, IL, USA, 1968.

    Google Scholar 

  48. Rob, D., The Electrochemical Society, 90, 9, 67–74.

    Google Scholar 

  49. Dick, R.M., Industrial Finishing, 46, 3, 30–32, 1970.

    MathSciNet  Google Scholar 

  50. Sloan, E.M., Products Finishing, 48, 6, 82–85, 1984.

    Google Scholar 

  51. Kaercher GmbH, Grundsatzartikel Hochdruckreinigung, Germany.

    Google Scholar 

  52. Meng, P., Geskin, E.S., Leu, M.C. , Li, F. and Tismeneskiy, L., J. Manufacturing Society, and Eng., Trans, of ASME, 580, 120, 1998.

    Google Scholar 

  53. Keeney, C., Ocean Sci. and Eng., 10, 1–2, 31–87, 1985.

    Google Scholar 

  54. Corbeels, P.L.W., Senser, D. and Lefebvre, A.H., Atomization and Sprays, 2, 87–99, 1992.

    Google Scholar 

  55. Domnick, J., Scheibe, A., Steigleder, T. and Weckrle, G., Jet disintegration and droplet formation of high-speed rotary bells, Proc. ILASS-Europe’99, ONERA, Toulouse, July 1999.

    Google Scholar 

  56. Dominck, J., Lindenthal, A., Tropea, C. and Xu, T. H., Atomization and Sprays, 5, 4, 1994.

    Google Scholar 

  57. Rawle, A., The importance of particle sizing in the coatings industry, Malvern Instruments Ltd, Malvern UK, 1998.

    Google Scholar 

  58. http://nuclear.hazard.uiuc.edu /packets/coatings/appltech.htm/.

  59. Allen, T., Particle Size Measurement, Chapman and Hall, 4th Edition, 1992.

    Google Scholar 

  60. Beckers, G.J.J., and Vergina, H.J., Powder Technology, 60, 245–248, 1989.

    Article  Google Scholar 

  61. www.SATA.de .

  62. Spraying Systems Ltd, Catalogue 60M, Industrial Sprays Products, Surrey, UK, 2000.

    Google Scholar 

  63. http://www.p2pays.org /ref/01/00994.htlm/.

  64. Davies, K., Private Communication, Communication Manager, Vauxhall Motors, Ellesmere Port, Cheshire, UK, 2000.

    Google Scholar 

  65. http://www.epa.nsw.gov.au /mao/ind/sp/.

  66. DURR Systems GmBH, High-Speed Rotary Atomizer, Operating Manual, 1991.

    Google Scholar 

  67. www.lemmer.com [65] Ziene, M., Euro Coat, 4, 262–269, 1993.

    Google Scholar 

  68. Lambourne, R. E., Paint and Surface Coatings, Theory and Practice, Horwood Ltd, 1993.

    Google Scholar 

  69. A Anon, A bright future, Polymer Paint Colour Journal, 182, 19, August 1992.

    Google Scholar 

  70. Wahlhammer, M.L., Private Communication, Volvo AB, Gothenberg, Sweden, 2000.

    Google Scholar 

  71. Kayano, A. and Kamiya, T., Calculation of the mean size of the droplets purged from the rotating disc, Proc. ICLASS-78, Tokyo, 133–138, 1978.

    Google Scholar 

  72. Biermarnn, C.J., Handbook of Pulping and Papermaking, 2nd Edition, Academic Press, 1996.

    Google Scholar 

  73. http://encarta.msn.com /find/concise.asp.

  74. http://www.harperimage.com /techpapers/thermalspray.htlm.

  75. Yule, A.J. and Dunkley, J. J., Atomization of Melts, Oxford University Press, 1994.

    Google Scholar 

  76. http://www.pctechguide.com /13inkjets.htlm.

  77. http://www.ccsi.cannon.com .

  78. http://hp2000c.com .

  79. Hayward, A., and Moffat, L., Private Communication, Domino Inkjet Printers, Manchester, 2000.

    Google Scholar 

  80. http://www.videojet.com.

    Google Scholar 

  81. Gleason, A., Technical Manual, Videojet Systems Intenational Inc., Technical Publication Department, IL, USA, Feb. 2000.

    Google Scholar 

  82. Hayes, D.H. and Cox, W.P., US Patent 5703631, 1998.

    Google Scholar 

  83. Yoshimura, K., Kishimoto, M. and Suemune, T., Inkjet printing technology, Oki Technical Review, Oki Electric Industry Co., Ltd, No. 161, Vol. 64, August 1998.

    Google Scholar 

  84. Yoshimura, K., Ink technologies, Oki Technical Review, IS&T Symposim, 2657, 464–470, 1996.

    Google Scholar 

  85. Wang, J., Yu, J.D., Yong, Y.K. and Tami, T., A layerwise plate theory for the vibrations of electroded crystal plates, Proc. IEEE Int. Frequency Control Symp., Besancon, France, April 1999.

    Google Scholar 

  86. Lin, T., and Shu, J., A colour consistency algorithm between different printers, Proc. IS&T Symp., 409–411, Feb. 1998.

    Google Scholar 

  87. http://www.obd.com .

  88. Yong, Y.K., Wang, J. and Imai, T., Frequency-temperature analysis of piezo-electric crystal plate resonators using finite elements based on higher-order plate theory, Proc. IEEE, International Ultrasonic Symposium, Toronto, Canada, Oct. 5–8, 1997.

    Google Scholar 

  89. Wang, J., Yu, J.D., Yong, Y.K. and Imai, T., A new theory for the electrode piezoelectric plate and its finite element application for the forced vibration analysis of quartz crystal, Proceeding International Ultrasonic Symposium, Sendai, Japan, 913–018, 1998.

    Google Scholar 

  90. Diepold, T., Obermeier, E. and Berchtold, A., A micromachined continuous inkje print head for high resolution printing, Technical Digest MME, Southampton, 176–179, 1998.

    Google Scholar 

  91. Ratnakar, V., Two-row buffer image compression, Int. Conf. Acoustics, Speech, Signal Processing, IEEE, March 1999.

    Google Scholar 

  92. Shirashi, Y., Communication network now and in future, Oki Technical Review, 65, 162, 1999.

    Google Scholar 

  93. Ito, K., .Matsushiro, N. and Yobayashi, Y., Colour matching technology, Oki Technical Review, 64, 161, 1999.

    Google Scholar 

  94. Parrado, M.E. and Gonzaloz, J.E., Proc. Int. Conf. Liquid Atomization and Spray Systems, ICLASS-2000, 893–901, Pasadena, California, July 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag London

About this chapter

Cite this chapter

Nasr, G.G., Yule, A.J., Bendig, L. (2002). Processes Involving Spray Surface Impact. In: Industrial Sprays and Atomization. Springer, London. https://doi.org/10.1007/978-1-4471-3816-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3816-7_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-875-1

  • Online ISBN: 978-1-4471-3816-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics