Skip to main content

Processes Involving Vaporization, Cooling or Cleaning of Gases

  • Chapter
Industrial Sprays and Atomization

Abstract

Fire has two faces: one is friendly, it gives light and warmth. It has set in motion the process of civilization. Through its force the human race has developed. But when it gets out of control it shows its other nature. Then fire devours and destroys everything. Its destructive force cannot be subdued. It becomes an incalculable enemy of man. Among historical events, which have shaken the world, there have been disasters like the one in the year 64 in Rome, the Great Fire of London in 1666 and the big bush fires of 1994 in Sydney [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brand Katastrophen, Tosa Verlag Wien, 1999.

    Google Scholar 

  2. Ungerleider, G.M., Catchpole, D.V. and Hamlin, C.C., Considerations in the phase-out of halon flooding fire extinguishment agents, Proc. 3rd Int. Conf. on Health, Safety and Environment in Oil and Gas Exploration and Production, Part 1, 1996.

    Google Scholar 

  3. Warner-Howard, D. and Horsman, G., Safety without halon, Fire Prevention, 277, March 1995.

    Google Scholar 

  4. Cote, A.E., Principles of fire protection, Fire Protection Handbook; 16th edn., Quincy, Massachusetts: National Fire Protection Association, US, 1986.

    Google Scholar 

  5. Schneider, V., and Hofmann, J., VFDB Zeitschrift Forschung und Technik im Brandschutz, 42, 2, 67–73, 1993.

    Google Scholar 

  6. Liu, Z., Kim, A.K. and Su, J.Z., The effect of air convection on the performance of water mist fire suppression systems, AIAA/ASME Joint Thermophysics and Heat Transfer Conference, Vol. 1, ASME 1998

    Google Scholar 

  7. NFPA 750 Standard on Water Mist Fire Protection Systems, 2000 Edition.

    Google Scholar 

  8. Minimax GmbH, Fine Water Spray Systems, Sonderdruck WS 5 aus dem Schadenmagazin der Albingia Versicherung.

    Google Scholar 

  9. Coppalle, A., Fire Protection: Water Curtains, Fire Safety Journal, 241–255, 1993.

    Google Scholar 

  10. Ravigururajan, T.S., and Beitran, M.P., A model for attenuation of fire radiation through water drops, Fire Safety Journal, 171–181, 1989.

    Google Scholar 

  11. Sprakel, D., Water Mist Fire Extinguishing Systems — A Chance for Safety and Environment, FOGTEC GmbH, Köln 2000.

    Google Scholar 

  12. Anon, Water mist — a status update, Fire Prevention 287, March 1996.

    Google Scholar 

  13. Dubay, C., The effects of water mist on interior fire fighting, Fire Engineering, Nov. 1996.

    Google Scholar 

  14. Reischl, U., Water fog stream heat radiation attenuation, Fire Technology, 15, 4, 262–270, 1979.

    Article  Google Scholar 

  15. Hood, C., Fire protection for cable tunnels, Nuclear Eng. Int., 461, 509, 43, 1996.

    Google Scholar 

  16. Bill, R.G., Hansen, R.L. and Richards, K., Fine-spray (water mist) protection of shipboard engine rooms, Fire Safety Journal 29, 317–336, 1997.

    Article  Google Scholar 

  17. Anon, Water mist: the most effective fire fighting solution?, Naval Architect, 20, 1996.

    Google Scholar 

  18. Wolfe, J.E., and DeSipio, P.A., Evaluation of fine water mist for applications in naval aircraft fire protection and explosion suppression, FED-Vol. 211, Fluid Measurement and Instrumentation, ASME, 1995.

    Google Scholar 

  19. Myung Bae Kim, Yong Jae Jang and Myong O. Yoon, Fire Safety J., 28, 295–306, 1997.

    Article  Google Scholar 

  20. Mawhinney, J.P. and Solomon, R., Water mist fire suppression systems, Proc. Int. Conf. on Water Mist Fire Suppression Systems, Boras, Sweden, Chap. 15, 1993.

    Google Scholar 

  21. Arvidson, M., The efficiency of different water mist systems in a ship cabin, Proc. Int. Conf. on Water Mist Fire Suppression Systems, Boras, Sweden, 1993.

    Google Scholar 

  22. Anderson, P., Arvidson, M. and Holmstedt, G., Small scale experiment and theoretical aspects of flame extinguishments with water mist, Brandteknik Lunds Tekniska Högskola, Lund Universitet, Dept. of Fire Safety Eng., Report 3080, Lund, Sweden, 1996.

    Google Scholar 

  23. Kim, A.K. and Dlugogorski, B.Z., Multipurpose overhead compressed-air foam system and its fire suppression performance, J. Fire Prot. Eng., 8(3), 133–150, 1997.

    Article  Google Scholar 

  24. Holzhauer, R., Steam, atomizing, and evaporative humidification equipment, Plant Engineering, May 27, 1982.

    Google Scholar 

  25. Henne, E., Luftbefeuchtung and R. Oldenbourg, Springer Verlag Publisher GmbH, München, 1995.

    Google Scholar 

  26. Pickering, C.A.C. and Jones, W.P., Health and hygienic humidification, BSRIA Technical Note 13/86, 1986.

    Google Scholar 

  27. Schlüter, P., Luftbefeuchtung und Hygiene, Papier and Kunststoff-Verarbeiter 8/92, 1992.

    Google Scholar 

  28. Koch, R., Untersuchungen zum einsatz von Sprühbefeuchtereinheiten in krankenhausklimaanlagen, Luft- und Kältetechnik 1984/1, 1984.

    Google Scholar 

  29. Raumluftqualität, Fachartikel zum Thema Verbesserung der Raumluftqualität, Defensor/Axair AG, CH-8808, Pfäffikon SZ, Brochure No. 57.1364 9607.

    Google Scholar 

  30. Carroll, B. T., Controlling humidity in the plant, Plant Engineering, 25, 1976

    Google Scholar 

  31. Draabe, U., Luftfeuchte hat großen einfluß auf Verarbeitung und produktqualität, Maschinenmarkt, Würzburg, 105, 25, 1999.

    Google Scholar 

  32. Holzgen, M., Humidificateurs d’air à vapeur, ETB TUG, 50, 569, 5–12, 1985.

    Google Scholar 

  33. Wolk, R.H. and Cohn, A., New power plant cycles utilizing air humidification and turbo machinery, Proc. of the American Power Conf., Illinois Inst. Technology, Chicago, 1004–1009, 1993.

    Google Scholar 

  34. Utamura, M., Kuwahara, T., Murata, H. and Horii, N., Effects of intensive evaporative cooling on performance characteristics of land-based gas turbine, Joint Power Gen. Conf., Vol. 2, ASME, 1999.

    Google Scholar 

  35. Kaschub, A.L., Industrial humidification, Plant Engineering, April, 19, 1979.

    Google Scholar 

  36. DeBat, R.J., Humidity: the great equalizer, HP AC Heating/Piping/Air-Conditioning, Oct, 1996.

    Google Scholar 

  37. Uhlmann, S. and Heyde, J., Auslegung und nutzen der polytropen befeuchtung im axialventilator, Luft- und Kältetechnik, 3, 1978.

    Google Scholar 

  38. Sohr, R.T., The most precise and clean mode for humidification of space, ASHRAE Transactions, 103, 2, 1997.

    Google Scholar 

  39. Draabe, U., Raumluftfeuchte — ein produktionsfaktor, Technik am Bau, 19, 10, 758–760, 1988.

    Google Scholar 

  40. Gidwani, B.N., Humidification steam vs. water, Assoc, of Energy Engineers, Atlanta, 313–316, Nov., 1984.

    Google Scholar 

  41. [ Schlüter, P., Luftbefeuchtung bei der druck- und papierverarbeitung — notwendigkeit und folgen, Polygraph — Treffpunkt Druckindustrie, 11, 1994.

    Google Scholar 

  42. Hoffmann, H., Control and stability of air-conditioning system with variation of water mass-flow in the spray nozzle chamber air humidifier, Proc. XVth Int. Cong, of Refrigeration, Venice, Vol. IV, 1979.

    Google Scholar 

  43. Hall, G., Improving laboratory humidity control while minimizing energy consumption, SENSORS, May, 1997.

    Google Scholar 

  44. Schaal, G., Function and energy consumption of HVAC systems — method of evaluation, Conf. Article, Springer Verlag, 1983.

    Google Scholar 

  45. Optimierung von Luftbefeuchtungskammern mit Lechler Hochleistungs- Exzenterdüsen, Lechler GmbH+Co.KG D-72555 Metzingen, Brochure No. AE/834- D.

    Google Scholar 

  46. Amer, M.A., Auslegung und vergleich der leistung von zerstäubungsbefeuchtern, Klima + Kälte-Ingenieur, 10, 1977.

    Google Scholar 

  47. Kachhwaha, S.S., Dhar, P.L. and Kale, S.P., Experimental studies and numerical simulation of evaporative cooling of air with a water spray — I. Horizontal parallel flow, Int. J. Heat Mass Transfer, 41, 2, 447–464, 1998.

    Article  Google Scholar 

  48. Kachhwaha, S.S., Dhar, P.L. and Kale, S.P., Experimental studies and numerical simulation of evaporative cooling of air with a water spray — II. Horizontal counter flow, Int. J. Heat Mass Transfer, 41, 2, 465–474, 1998.

    Article  Google Scholar 

  49. Draabe, U., Frische Luft aus dem Sumpf, Der Polygraph, 22, 1871–1874, 1991.

    Google Scholar 

  50. Willey, L.J., Jensen, E.P., Adiabatic spray humidification systems in telecommunications facilities, Proc. Int. Telecommunications Energy Conf, 1986.

    Google Scholar 

  51. Bahnson, L., TexFog humidity control, Textile Machinery Technology, April, 1996

    Google Scholar 

  52. Leisinger, F.M., Humidifiers for the home, Domestic Heating Review, Heat, and Vent. Eng., Nov., 1970.

    Google Scholar 

  53. Obier, H., Humidification alternatives for air conditioning, Heating/Piping/Air Conditioning, December, 1982.

    Google Scholar 

  54. Lippold, H. and Voigt, J., Ein rotationszerstäuber zur luftbefeuchtung, Luft- und Kältetechnik, 2, 1972.

    Google Scholar 

  55. Arora, B.P. and Vitoon, V., Developing clean coal/gas desulphurization option for least cost SO2 control in coal fired power plants, Joint ASME/IEEE Power Generation Conf, Kansas City, Oct., 1993.

    Google Scholar 

  56. Winske, P., Operation experience with spray dryers for flue gas desulphurization in german speaking countries, Proc. ASME Joint Int. Power Gen. Conf. Phoenix, Oct., 1994.

    Google Scholar 

  57. Mensing, A., Rauchgasreinigung perfektioniert, Chemische Industrie, 4, 1989.

    Google Scholar 

  58. Van Bush, P., Advantages of humidification for pollution control, Proc. 57th Annual Power Conf, Parti, April, 1995.

    Google Scholar 

  59. Michalski, J.A., The influence of spraying angle on aerodynamic characteristics of FGD spray towers, Chem. Eng. Comm., 165, 17–40, 1998.

    Article  Google Scholar 

  60. Ollero, P., Salvador, L. and Canadas, L., An experimental study of flue gas desulphurization in a pilot spray dryer, Environmental Progress, 16, No. 1.

    Google Scholar 

  61. Livengood, D. and Markussen, J.M., FG technologies for combined control of SO2 and NOx.

    Google Scholar 

  62. Gleiser, R. and Felsvang, K., Mercury emission reduction using activated carbon with spray dryer flue gas desulphurization, Proc. American Power Conf, 56, 1, 452–457, 1994.

    Google Scholar 

  63. Chugthai, M.Y., Linneweber, K.W. and Schmid, C., Direct desulfurization in combination with polishing reactor, Proc. SO2-Control Symposium, New Orleans, 1990.

    Google Scholar 

  64. Rappen, A., Morgennebel gegen staub, Chemietechnik, 25, 10, 1996.

    Google Scholar 

  65. Brauer, H. and Varma, Y.B.G., Air Pollution Control Equipment, Springer Verlag, 1981.

    Book  Google Scholar 

  66. Kubisa, R. and Pollack, H., Der Entwicklungsstand der hochtemperatur-Verbrennung und rauchgasreinigungstechnik — dargestellt an zwei laufenden bauvorhaben, Chem.- Ing.-Tech., 61, 4, 282–287, 1989.

    Article  Google Scholar 

  67. Menig, H., Emissionsminderung und Recycling, Ecomed Verlagsgesellschaft, 1984.

    Google Scholar 

  68. Barg, B., Düsensysteme und tropfenabscheider für eine rauchgasentsch wefelung aus einer hand, Verfahrenstechnik, 11, 1994.

    Google Scholar 

  69. Bürkholz, A., Droplet separation, VCH Verlagsgesellschaft mbH, Weinheim, Germany, 1989.

    Google Scholar 

  70. Bendig, L., Spray nozzles in environmental technology for gas washing, Proc. ILASS-Europe’93, CHISA Conf., Prague, Czech Republic, 1993.

    Google Scholar 

  71. Bendig, L., Industrial spray nozzles and their applications, Proc. ICLASS’94, INSA/CORIA, Rouen, France, Begell House NY, 1994.

    Google Scholar 

  72. Bendig, L., Wet scrubbers: match the spray, Environmental Eng. World, March/April, 1995.

    Google Scholar 

  73. Henri J.T., Medenblik, Sprühsysteme zur gaskonditionierung in verdamp- fungskühlern, Maschinenmarkt, 27, 446–450, 1974.

    Google Scholar 

  74. Bartell, W., Ferrazza, J. and Schick, R., Drop size comparisons for flue gas desulfurization, Proc. Int. Power Gen. Conf, San Diego, CA, Oct., 1991.

    Google Scholar 

  75. Bendig, L., Droplet size analysis on twin fluid atomisers with external mixture for gas cooling purpose, Proc. ILASS-Europe’90, Univ. Pisa, July, 1990.

    Google Scholar 

  76. Bendig, L., Droplet size analysis on twin fluid atomizers with internal mixture and a de-Laval design, Proc. ILASS-Europe’92, Shell, Amsterdam, Oct., 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag London

About this chapter

Cite this chapter

Nasr, G.G., Yule, A.J., Bendig, L. (2002). Processes Involving Vaporization, Cooling or Cleaning of Gases. In: Industrial Sprays and Atomization. Springer, London. https://doi.org/10.1007/978-1-4471-3816-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3816-7_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-875-1

  • Online ISBN: 978-1-4471-3816-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics