Skip to main content

Nonlinear Gas Turbine Modelling

  • Chapter
Book cover Dynamic Modelling of Gas Turbines

Abstract

In this chapter several nonlinear model representations are presented along with a general methodology for nonlinear system modelling. Polynomial NARMAX and neural network models are presented in more detail and nonlinear models for the engine are estimated. It is clear that in order to model the global dynamics of the gas turbine a nonlinear model is required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schetzen M. The Volterra and Wiener Theories of Nonlinear Systems. New York: Wiley-Interscience, 1980.

    MATH  Google Scholar 

  2. Leontaritis I J, Billings SA. Experimental design and identiflability for nonlinear systems. IntJ. Systems Science, 1987;18:189–202.

    Article  MATH  Google Scholar 

  3. Narendra KS, Gallman PG. An iterative method for the identification of nonlinear systems using a Hammerstein model. IEEE Trans. Automatic Control, 1966;11:546–550.

    Article  Google Scholar 

  4. Billings SA, Tsang KM. Spectral analysis of block-structured nonlinear systems. J. Mechanical Systems and Signal Processing, 1990;4:117–130.

    Article  MATH  Google Scholar 

  5. Weiss M, Evans C, Rees D. Identification of nonlinear cascade systems using paired multisine signals. IEEE Trans, on Instrumentation and Measurement, 1998;47:332–336.

    Article  Google Scholar 

  6. Vandersteen G, Schoukens J. Measurement and identification of nonlinear systems consisting of linear dynamic blocks and one static nonlinearity. IEEE Trans. Automatic Control, 1999;44:1266–1271.

    Article  MathSciNet  MATH  Google Scholar 

  7. Leontaritis IJ, Billings SA. Input-output parametric models for nonlinear systems. Part I: deterministic nonlinear systems. Int. J. Control, 1985;41:303–328.

    Article  MathSciNet  MATH  Google Scholar 

  8. Billings SA, Voon WSF Piecewise identification of nonlinear systems. Int. J. of Control, 1987;46:215–235.

    Article  MathSciNet  MATH  Google Scholar 

  9. Johansen TA, Foss BA Constructing NARMAX models using ARMAX models. Int. J. Control, 1993;58:1125–1153.

    Article  MathSciNet  MATH  Google Scholar 

  10. Sjöberg J Zhang Q, Ljung L, Benveniste A, Delyon B, Glorennec P, Hjalmarsson H, Juditsky A. Nonlinear black-box modeling in system identification: A unified overview. Automatica, 1995;31:1691–1724.

    Article  MATH  Google Scholar 

  11. Ljung L. Black-box models from input-output measurements. In: Proc. IEEE Instrumentation and Measurement Technology Conf., Budapest, 2001; 138–146.

    Google Scholar 

  12. Ljung L. System Identification: Theory for the User. Englewood Cliffs, NJ: Prentice-Hall, 1987.

    MATH  Google Scholar 

  13. Chen S, Billings SA, Luo W. Orthogonal least squares methods and their application to nonlinear system identification. Int. J. of Control, 1989; 50:1873–1896.

    Article  MathSciNet  MATH  Google Scholar 

  14. Korenberg MJ, Billings SA, Liu YP, Mollroy PJ. Orthogonal parameter estimation algorithm for nonlinear stochastic systems. Int. J. of Control, 1988; 48:193–210.

    Article  MATH  Google Scholar 

  15. Aguirre LA. Some remarks on structure selection for nonlinear models. Int. J. Bifurcation and Chaos, 1994;4:1707–1714.

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu YP. Identification of nonlinear systems: The NARMAX polynomial model approach. Ph.D. dissertation. University of Sheffield, Department of Automatic Control and Systems Engineering, UK, 1988.

    Google Scholar 

  17. Billings SA, Voon WSF. Structure detection and model validity tests in the identification of nonlinear systems. IEE Proceedings, Pt.D. 1983; 130:193–199.

    Article  MATH  Google Scholar 

  18. Aguirre LA, Donoso-Garcia PF, Santos-Filho R. Use of a priori knowledge in the identification of global nonlinear models: A case study using a buck converter. IEEE Trans. Circuits and Systems, 2000;47:1081–1085.

    Article  Google Scholar 

  19. Nørgaard M, Ravn O, Poulsen KN, Hansen LK. Neural Networks for Modelling and Control. London: Springer-Verlag, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag London

About this chapter

Cite this chapter

Kulikov, G.G., Thompson, H.A. (2004). Nonlinear Gas Turbine Modelling. In: Kulikov, G.G., Thompson, H.A. (eds) Dynamic Modelling of Gas Turbines. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-3796-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3796-2_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-914-7

  • Online ISBN: 978-1-4471-3796-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics