Skip to main content

Abstract

In general there are two ways of arriving at models of physical processes:

  • Physical principles modelling. Physical knowledge of the process, in the form of first principles, is employed to arrive at a model that will generally consist of a multitude of differential / partial differential / algebraic relations between physical quantities. The construction of a model is based on presumed knowledge about the physics that governs the process. The first principles relations concern, e.g., the laws of conservation of energy and mass and Newton’s law of movement.

  • Experimental modelling, or system identification. Measurements of several variables of the process are taken and a model is constructed by identifying a model that matches the measured data as well as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ljung L. System Identification: Theory for the User. Englewood Cliffs, NJ: Prentice Hall; 1987.

    MATH  Google Scholar 

  2. Godfrey KR. Correlation methods. Automatica, 1980;16:527–534.

    Article  MATH  Google Scholar 

  3. Ljung L. System Identification Toolbox for Use with Matlab. Natick, MA: Mathworks, Inc., 1995.

    Google Scholar 

  4. Norton JP. An Introduction to Identification. London: Academic Press, 1986.

    MATH  Google Scholar 

  5. Brillinger D. Time Series: Data Analysis and Theory. San Francisco: Holden-Day, 1981.

    MATH  Google Scholar 

  6. Schoukens J, Renneboog J. Modeling the noise influence on the Fourier coefficients after a discrete Fourier transform. IEEE Trans. Instrumentation and Measurement, 1986;35:278–286.

    Article  Google Scholar 

  7. Gade S, Herlufsen H. Use of weighting functions in DFT/FFT analysis. Parts I and II. Briiel and Kjaer Technical Review 3 and 4, 1987.

    Google Scholar 

  8. Bendat JS, Piersol AG. Engineering Applications of Correlation and Spectral Analysis. New York: Wiley-Interscience, 1980.

    MATH  Google Scholar 

  9. Guillaume P. Identification of multiinput multioutput systems using frequency-domain methods. Ph.D. dissertation. Vrije Universiteit Brüssel, Department ELEC, Belgium, 1992.

    Google Scholar 

  10. Schoukens J, Guillaume P, Pintelon R. Design of broadband excitation signals. (Chapter 3). In: Godfrey K, editor. Perturbation Signals for System Identi-fication. Englewood Cliffs, NJ: Prentice-Hall, 1993.

    Google Scholar 

  11. Pintelon R, Guillaume P, Rolain Y, Verbeyst F. Identification of linear systems captured in a feedback loop. IEEE Trans. Instrumentation and Measurement, 1992;41:747–754.

    Article  Google Scholar 

  12. Schoukens J, Pintelon R, Renneboog J. A maximum likelihood estimator for linear and nonlinear systems — a practical application of estimation techniques in measurement problems. IEEE Trans. Instrumentation and Measurement, 1988;37:10–17.

    Article  Google Scholar 

  13. Kollâr I. Frequency-Domain System Identification Toolbox for Use with Matlab. Natick, MA: Mathworks, Inc., 1994.

    Google Scholar 

  14. Kollâr I. On frequency-domain identification of linear systems. IEEE Trans. Instrumentation and Measurement, 1993; 42:2–6.

    Article  Google Scholar 

  15. Pintelon R, Schoukens J. System Identification: A Frequency-Domain Approach. IEEE Press, 2001.

    Book  Google Scholar 

  16. Evans C. Identification of linear and nonlinear systems using multisine signals, with a gas turbine application. Ph.D. dissertation. University of Glamorgan, School of Electronics, UK, 1998.

    Google Scholar 

  17. Schoukens J, Dobrowiecki T, Pintelon R. Parametric and nonparametric identification of nonlinear systems in the presence of nonlinear distortions — A frequency-domain approach. IEEE Instrumentation and Measurement Technology Conference, IMTC/98, St. Paul, USA, 1998;43:176–190.

    MathSciNet  MATH  Google Scholar 

  18. Schoukens J, Pintelon R, Van Hamme H. Identification of linear dynamic systems using piecewise constant excitations: Use, misuse and alternatives. Automatica, 1994; 30:1153–1169.

    Article  MATH  Google Scholar 

  19. Hill DC. Identification of gas turbine dynamics: time-domain estimation problems. ASME Gas Turbine Conference, 97-GT-31, 1997:1–7.

    Google Scholar 

  20. Godfrey KR. Perturbation Signals for System Identification. Englewood Cliffs, NJ: Prentice-Hall, 1993.

    MATH  Google Scholar 

  21. Van den Bos A. Estimation of parameters of linear system using periodic test signals. Ph.D. dissertation. Technische Hogeschool Delft, Netherlands, 1970.

    Google Scholar 

  22. Schroeder MR. Synthesis of low peak-factor signals and binary sequences of low auto-correlation. IEEE Trans. Information Theory, 1970; 16:85–89.

    Article  Google Scholar 

  23. Guillaume P, Schoukens J, Pintelon R, Kollâr I. Crest factor minimisation using nonlinear Chebyshev approximation methods. IEEE Trans. Instrumen-tation and Measurement, 1991;40:982–989.

    Article  Google Scholar 

  24. Kollâr I, Pintelon R, Schoukens J. Frequency-domain system identification toolbox for Matlab: A complex application example. Prepr. 10th IFAC Symp. on System Identification, Denmark, 1994;4:23–28.

    Google Scholar 

  25. Schoukens J, Pintelon R, Vandersteen G, Guillaume P. Frequency-domain system identification using nonparametric noise models estimated from a small number of data sets. Automatica, 1997;33:1073–1086.

    Article  MathSciNet  MATH  Google Scholar 

  26. Evans C, Rees D, Jones L. Identifying linear models of systems suffering nonlinear distortions, with a gas turbine application. IEE Proc. Control Theory and Applications, 1995 ; 142:229–240.

    Google Scholar 

  27. McCormack AS, Godfrey KR, Flower JO. The detection of and compensation for nonlinear effects using periodic input signals. IEE International Conference “Control 94” University of Warwick, 1994:297–302.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag London

About this chapter

Cite this chapter

Kulikov, G.G., Thompson, H.A. (2004). Linear System Identification. In: Kulikov, G.G., Thompson, H.A. (eds) Dynamic Modelling of Gas Turbines. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-3796-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3796-2_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-914-7

  • Online ISBN: 978-1-4471-3796-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics