Skip to main content

Background and Introduction

  • Chapter
Control of Fuel Cell Power Systems

Abstract

Fuel cells are electrochemical devices that convert the chemical energy of a gaseous fuel directly into electricity and are widely regarded as a potential alternative stationary and mobile power source. They complement heat engines and reduce the ubiquitous dependence on fossil fuels and thus have significant environmental and national security implications. As such, they are actively studied for commercial stationary power generation, residential applications, and transportation technologies. Recent study has shown that, in the United States, carbon dioxide (CO2) accounts for more than 80% of greenhouse gases released [117] and the transportation sector is responsible for 32% of the overall CO2 emission [31]. In this book, we concentrate on the fuel cell control requirement during transients. Application of fuel cells in automotive powertrains is emphasized, partly because ground vehicle propulsion conditions present the most challenging control problem, and partly due to their importance in global fuel consumption and emission generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badrinarayanan, P., Ramaswamy, S., Eggert, A., and Moore, R. (2001). Fuel cell stack water and thermal management: Impact of variable system power operation, SAE Paper 2001–01–0537.

    Google Scholar 

  2. Barbir, F., Fuchs, M., Husar, A., and Neutzler, J. (2000). Design and operational characteristics of automotive PEM fuel cell stacks.SAE Paper 2000–01–0011.

    Google Scholar 

  3. Fronk, M., Wetter, D., Masten, D., and Bosco, A. (2000). PEM fuel cell system solutions for transportation.SAE Paper 2000–01–0373.

    Google Scholar 

  4. Fuchs, M., Barbir, F., Husar, A., Neutzler, J., Nelson, D., Ogburn, M., and Bryan, P. (2000). Performance of automotive fuel cell stack.SAE Paper 2000–01–1529.

    Google Scholar 

  5. Kalhammer, F., Prokopius, P., Roan, V., and Voecks, G. (1998). Status and prospects of fuel cells as automobile engines. State of California Air Resources Board.

    Google Scholar 

  6. Stobart, R. (1999). Fuel cell power for passenger cars — what barriers remain?SAE Paper 1999–01–0321.

    Google Scholar 

  7. Singh, D., Lu, D., and Djilali, N. (1999). A two-dimensional analysis of mass transport in proton exchange membrane fuel cells.International Journal of Engineering Science, 37, 431–452.

    Article  Google Scholar 

  8. Okada, T., Xie, G., and Meeg, M. (1998). Simulation for water management in membranes for polymer electrolyte fuel cells.Electrochimica Acta, 43.

    Google Scholar 

  9. Nguyen, T. and White, R. (1993). A water and heat management model for proton-exchange-membrane fuel cells.Journal of Electrochemical Society, 140 (8), 2178–2186.

    Article  Google Scholar 

  10. Mann, R., Amphlett, J., Hooper, M., Jensen, H., Peppley, B., and Roberge, P. (2000). Development and application of a generalized steady-state electrochemical model for a PEM fuel cell.Journal of Power Sources, 86, 173–180.

    Article  Google Scholar 

  11. Marr, C. and Li, X. (1998). Performance modelling of a proton exchange membrane fuel cell. Proceedings of Energy Sources Technology Conference and Exhibition, pages 1–9.

    Google Scholar 

  12. Kim, J., Lee, S.-M., and Srinivasan, S. (1995). Modeling of proton exchange membrane fuel cell performance with an empirical equation.Journal of the Electrochemical Society, 142 (8), 2670–2674.

    Article  Google Scholar 

  13. Gurau, V., Liu, H., and Kakac, S. (1998). Mathematical model for proton exchange membrane fuel cells.Proceedings of the 1998 ASME Advanced Energy Systems Division, pages 205–214.

    Google Scholar 

  14. Dannenberg, K., Ekdunge, P., and Lindbergh, G. (2000). Mathematical model of the PEMFC.Journal of Applied Electrochemistry, 30, 1377–1387.

    Article  Google Scholar 

  15. Bernardi, D. and Verbrugge, M. (1992). A mathematical model of the solid-polymer-electrolyte fuel cell.Journal of the Electrochemical Society, 139 (9), 2477–2491.

    Article  Google Scholar 

  16. Bevers, D., Wöhr, M., Yasuda, K., and Oguro, K. (1997). Simulation of a polymer electrolyte fuel cell electrode.Journal of Applied Electrochemistry, 27 (11), 1254–1264.

    Article  Google Scholar 

  17. Amphlett, J., Baumert, R., Mann, R., Peppley, B., Roberge, P., and Rodrigues, A. (1994). Parametric modelling of the performance of a 5-kW proton-exchange membrane fuel cell stack.Journal of Power Sources, 49, 349–356.

    Article  Google Scholar 

  18. Baschuk, J. and Li, X. (2000). Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding.Journal of Power Sources, 86, 186–191.

    Article  Google Scholar 

  19. Bernardi, D. (1990). Water-balance calculations for solid-polymerelectrolyte fuel cells.Journal of Electrochemical Society, 137 (11), 3344–3350.

    Article  MathSciNet  Google Scholar 

  20. Büchi, F. and Srinivasan, S. (1997). Operating proton exchange membrane fuel cells without external humidification of the reactant gases.Journal of Electrochemical Society, 144 (8), 2767–2772.

    Article  Google Scholar 

  21. Chu, D. and Jiang, R. (1999a). Comparative studies of polymer electrolyte membrane fuel cell stack and single cell.Journal of Power Sources, 80, 226–234.

    Article  Google Scholar 

  22. Chu, D. and Jiang, R. (1999b). Performance of polymer electrolyte membrane fuel cell (PEMFC) stacks, part I. Evaluation and simulation of an air-breathing PEMFC stack.Journal of Power Sources, 83, 128–133.

    Article  Google Scholar 

  23. Jiang, R. and Chu, D. (2001b). Voltage-time behavior of a polymer electrolyte membrane fuel cell stack at constant current discharge.Journal of Power Sources, 92, 193–198.

    Article  Google Scholar 

  24. Laurencelle, F., Chahine, R., Hamelin, J., Agbossou, K., Fournier, M., Bose, T., and Laperriere, A. (2001). Characterization of a Ballard MK5-E proton exchange membrane fuel cell stack.Fuel Cells Journal, 1 (1), 66–71.

    Article  Google Scholar 

  25. Lee, J. and Lalk, T. (1998). Modeling fuel cell stack systems.Journal of Power Sources, 73, 229–241.

    Article  Google Scholar 

  26. Thirumalai, D. and White, R. (1997). Mathematical modeling of protonexchange-membrane fuel-cell stacks.Journal of Electrochemical Society, 144 (5).

    Google Scholar 

  27. Wöhr, M., Bolwin, K., Schnurnberger, W., Fischer, M., Neubrand, W., and Eigenberger, G. (1998). Dynamic modelling and simulation of a polymer membrane fuel cell including mass transport limitation.International Journal for Hydrogen Energy, 23 (3), 213–218.

    Article  Google Scholar 

  28. Akella, S., Sivashankar, N., and Gopalswamy, S. (2001). Model-based systems analysis of a hybrid fuel cell vehicle configuration.Proceedings of 2001 American Control Conference, 3, 1777–1782.

    Google Scholar 

  29. Amphlett, J., Baumert, R., Mann, R., Peppley, B., Roberge, P., and Rodrigues, A. (1994). Parametric modelling of the performance of a 5-kW proton-exchange membrane fuel cell stack.Journal of Power Sources, 49, 349–356.

    Article  Google Scholar 

  30. Barbir, F., Balasubramanian, B., and Neutzler, J. (1999). Trade-off design analysis of operating pressure and temperature in PEM fuel cell systems.Proceedings of the ASME Advanced Energy Systems Division, 39, 305–315.

    Google Scholar 

  31. Atwood, P., Gurski, S., Nelson, D., Wipke, K., and Markel, T. (2001). Degree of hybridization ADVISOR modeling of a fuel cell hybrid electric sport utility vehicle.Proceedings of 2001 Joint ADVISOR/PSAT Vehicle Systems Modeling User Conference, pages 147–155.

    Google Scholar 

  32. Boettner, D., Paganelli, G., Guezennec, Y., Rizzoni, G., and Moran, M. (2001a). Component power sizing and limits of operation for proton exchange membrane (PEM) fuel cell/battery hybrid automotive applications.Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition.

    Google Scholar 

  33. Friedman, D., Egghert, A., Badrinarayanan, P., and Cunningham, J. (2001). Balancing stack, air supply and water/thermal management demands for an indirect methanol PEM fuel cell system.SAE Paper 200101–0535.

    Google Scholar 

  34. Ogburn, M., Nelson, D., Wipke, K., and Markel, T. (2000a). Modeling and validation of a fuel cell hybrid vehicle.SAE Paper 2000–01–1566.

    Google Scholar 

  35. Rodatz, P. (2003).Dynamics of the polymer electrolyte fuel cell: Experiments and model-based analysis. Ph.D. thesis, Swiss Federal Institute of Technology, Zurich.

    Google Scholar 

  36. Sadler, M., Stapleton, A., Heath, R., and Jackson, N. (2001). Application of modeling techniques to the design and development of fuel cell vehicle systems.SAE Paper 2001–01–0542.

    Google Scholar 

  37. Padulles, J., Ault, G., Smith, C., and McDonald, J. (1999). Fuel cell plant dynamic modelling for power systems simulation.Proceedings of 34th Universities Power Engineering Conference, 34 (1), 21–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag London

About this chapter

Cite this chapter

Pukrushpan, J.T., Stefanopoulou, A.G., Peng, H. (2004). Background and Introduction. In: Control of Fuel Cell Power Systems. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-3792-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3792-4_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-928-4

  • Online ISBN: 978-1-4471-3792-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics