Skip to main content

Statistical Analysis of Repeated-Measures Data with Drop-outs

  • Chapter
Clinical Trials in Neurology
  • 277 Accesses

Abstract

Many clinical trials in neurology follow patients longitudinally over time, and measure clinical outcomes of interest repeatedly. A common problem that arises in this context is missing data caused by subjects dropping out prior to the end of the study. For earlier discussions of this topic, see Heyting et al. [1], Gornbein et al. [2], Little and Schenker [3] or Little [4]. This chapter reviews some approaches to statistical analysis when faced with this problem. I first discuss some simple approaches, including complete-case analyses that restrict attention to the cases that do not drop out. The latter are liable to yield biased answers when individuals that drop out differ systematically from those that remain in the study, as is often likely to be the case. I then discuss two more modern approaches that eliminate or reduce the bias of complete-case analysis by exploiting partial information on nonrespondents, namely maximum likelihood based on repeated-measures models, and multiple imputation. Methods are illustrated on an intent-to-treat analysis of data from a randomized clinical trial for tacrine in the treatment of Alzheimer’s disease, reported in detail in Little and Yau [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heyting A, Tolboom JTBM, Essers JGA. Statistical handling of drop-outs in longitudinal clinical trials. Stat Med 1992; 11: 2043–2063.

    Article  PubMed  CAS  Google Scholar 

  2. Gornbein JG, Lazaro C, Little RJA. Incomplete data in repeated measures analysis. Stat Methods Med Res 1992; 1: 275–295.

    Article  PubMed  CAS  Google Scholar 

  3. Little RJA, Schenker N. Missing data. In: Arminger G, Clogg CC, Sobel ME, editors. Handbook for statistical modeling in the social and behavioral sciences. New York: Plenum Press, 1994: 39–75.

    Google Scholar 

  4. Little RJA. Biostatistical analysis with missing data. In: Armitage P, Colton T, editors. Encyclopedia of biostatistics. New York: Wiley, 1997.

    Google Scholar 

  5. Little RJA, Yau L. Intent-to-treat analysis in longitudinal studies with drop-outs. Biometrics 1996; 52: 1324–1333.

    Article  PubMed  CAS  Google Scholar 

  6. Knapp MJ, Knopman DS, Solomon PR, Pendlebury WW, Davis CS, Gracon SI. A 30-week randomized controlled trial of high-dose tacrine in patients with Alzheimer’s disease. JAMA 1994; 271: 985–991.

    Article  PubMed  CAS  Google Scholar 

  7. Rosen WG, Mohs RC, Davis KL. A new rating scale for Alzheimer’s disease. Am J Psychiatry 1984; 141: 1356–1364.

    PubMed  CAS  Google Scholar 

  8. Meinert CL. Terminology: a plea for standardization. Controlled Clin Trials 1980; 2: 97–99.

    Article  Google Scholar 

  9. Rubin DB. Inference and missing data. Biometrika 1976; 63: 581–592.

    Article  Google Scholar 

  10. Little RJA. Modeling the drop-out mechanism in longitudinal studies. J Am Stat Assoc 1995; 90: 1112–1121.

    Article  Google Scholar 

  11. Murray GD, Findlay JG. Correcting for the bias caused by drop-outs in hypertension trials. Stat Med 1988; 7: 941–946.

    Article  PubMed  CAS  Google Scholar 

  12. Pocock SJ. Clinical trials: a practical approach. New York: Wiley.

    Google Scholar 

  13. Little RJA, Su HL. Item nonresponse in panel surveys. In: Panel Surveys, Kasprzyk D, Duncan G, Kalton G, Singh MP, editors. New York: Wiley, 1989: 400–425.

    Google Scholar 

  14. Beale EML, Little RJA. Missing values in multivariate analysis. J R Stat Soc B 1975; 37: 129–145.

    Google Scholar 

  15. Orchard T, Woodbury MA. A missing information principle: theory and applications. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability vol 1. 1972: 697–715.

    Google Scholar 

  16. Rubin DB, Schenker N. Multiple imputation for interval estimation from simple random samples with ignorable nonresponse. J Am Stat Assoc 1986; 81: 366–374.

    Article  Google Scholar 

  17. Park T. A comparison of the generalized estimating equation approach with the maximum likelihood approach for repeated measurements, Stat Med 1993; 12: 1723–1732.

    Article  PubMed  CAS  Google Scholar 

  18. Robins J, Rotnitsky A, Zhao LP. Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. J Am Stat Assoc 1995; 90: 106–121.

    Article  Google Scholar 

  19. Dixon WJ. BMDP statistical software. Berkeley: University of California Press, 1988.

    Google Scholar 

  20. SAS. The mixed procedure. In: SAS/STAT software: changes and enhancements, release 6.07. Technical Report P-229. Cary: NC: SAS Institute, 1992: chap 16.

    Google Scholar 

  21. Little RJA, Rubin DB. Statistical analysis with missing data. New York: Wiley, 1987.

    Google Scholar 

  22. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm (with discussion). J R Stat Soc Ser B 1977; 39: 1–38.

    Google Scholar 

  23. Harville DA. Maximum likelihood approaches to variance component estimation and to related problems (with discussion), J Am Stat Assoc 1977; 72: 320–340.

    Article  Google Scholar 

  24. Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics 1982; 38: 963–974.

    Article  PubMed  CAS  Google Scholar 

  25. Jennrich RI, Schluchter MD. Unbalanced repeated-measures models with structured covariance matrices. Biometrics 1986; 42: 805–820.

    Article  PubMed  CAS  Google Scholar 

  26. Hedeker D. MIXOR: a Fortran program for mixed-effects ordinal probit and logistic regression. University of Illinois at Chicago: Prevention Research Center, 1993.

    Google Scholar 

  27. Rubin DB. Multiple imputation for nonresponse in surveys. New York Wiley, 1987.

    Google Scholar 

  28. Imbens GW, Rubin DB. Bayesian inference for causal effects in randomized experiments with noncompliance. Ann Stat 1995; 25: 305–327.

    Google Scholar 

  29. Diggle P, Kenward MG. Informative dropout in longitudinal data analysis (with discussion). Appl Stat 1994; 43: 4994.

    Article  Google Scholar 

  30. Wu MC, Carroll RJ. Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics 1988; 44: 175–188.

    Article  Google Scholar 

  31. Wu MC, Bailey KR Estimation and comparison of changes in the presence of informative right censoring: conditional linear model. Biometrics 1989; 45: 939–955.

    Article  PubMed  CAS  Google Scholar 

  32. Little RJA, Wang Y-X. Pattern-mixture models for multivariate incomplete data with covariates. Biometrics 1996; 52: 98111.

    Google Scholar 

  33. Tanner MA, Wong WH. The calculation of posterior distributions by data augmentation. J Am Stat Assoc 1987; 82: 528–550.

    Article  Google Scholar 

  34. Geman S, Geman D. Stochastic relaxation, Gibbs’ distributions and the Bayesian restoration of images IEEE Trans Pattern Anal Machine Intell 1984; 6: 721–741.

    Article  CAS  Google Scholar 

  35. Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian data analysis, 1st edn. New York: Chapman Hall, 1995.

    Google Scholar 

  36. Tanner MA. Tools for statistical inference: methods for the exploration of posterior distributions and likelihood functions. 3rd ed. New York: Springer, 1996.

    Google Scholar 

  37. Gilks WR, Wang CC, Yvonnet B, Coursaget P. Random-effects models for longitudinal data using Gibbs’ sampling, Biometrics 1993; 49: 441–453.

    Article  PubMed  CAS  Google Scholar 

  38. Schafer JL. Analysis of incomplete multivariate data. London: Chapman and Hall, 1996.

    Google Scholar 

  39. Spiegelhalter D, Thomas A, Best N, Gilks W. BUGS: Bayesian Inference Using Gibbs’ Sampling. Cambridge: MRC Biostatistics Unit, 1995.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London

About this chapter

Cite this chapter

Little, R.J. (2001). Statistical Analysis of Repeated-Measures Data with Drop-outs. In: Guiloff, R.J. (eds) Clinical Trials in Neurology. Springer, London. https://doi.org/10.1007/978-1-4471-3787-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3787-0_13

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-856-0

  • Online ISBN: 978-1-4471-3787-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics