Advertisement

Molecular Regulation of Osteoblast Differentiation

  • Prasanna Bukka
  • Marc D. McKee
  • Andrew C. Karaplis
Chapter
Part of the Topics in Bone Biology book series (TBB, volume 1)

Abstract

Bone, the major component of the skeleton, is formed by two distinct ossification processes, intramembranous and endochondral. Intramembranous bone arises directly from mesenchymal cells condensing at ossification centers and transforming directly into osteoblasts. This form of ossification gives rise to the flat bones of the skull, parts of the clavicle, and the periosteal surface of long bones. Endochondral ossification differs from the intramembranous component in that it is formed in the presence of a cartilaginous blastema. It is a complex, multistep process requiring the sequential formation and degradation of cartilaginous structures that serve as templates for the developing axial and appendicular bones. This formation of calcified bone on a cartilage scaffold occurs not only during skeletogenesis but is an integral part of postnatal growth and fracture repair (Figure 1.1).

Keywords

Bone Formation Osteoblast Differentiation High Bone Mass Mesenchymal Condensation Runt Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acampora D, Merlo GR, Paleari L, Zerega B, Postiglione MP, Mantero S, et al. (1999) Craniofacial, vestibular and bone defects in mice lacking the Distal-less-related gene Dlx5. Development 126: 3795–809.PubMedGoogle Scholar
  2. 2.
    Alliston T, Choy L, Ducy P, Karsenty G, Derynck R (2001) TGF-beta-induced repression of CBFA1 by Smad3 decreases cbfal and osteocalcin expression and inhibits osteoblast differentiation. Embo J 20: 2254–72.PubMedCrossRefGoogle Scholar
  3. 3.
    Alvarez J, Sohn P, Zeng X, Doetschman T, Robbins DJ, Serra R (2002) TGFbeta2 mediates the effects of Hedgehog on hypertrophic differentiation and PTHrP expression. Development 129: 1913–24.PubMedGoogle Scholar
  4. 4.
    Amizuka N, Warshawsky H, Henderson JE, Goltzman D, Karaplis AC (1994) Parathyroid hormone-related peptide-depleted mice show abnormal epiphyseal cartilage development and altered endochondral bone formation. J Cell Biol 126: 1611–23.PubMedCrossRefGoogle Scholar
  5. 5.
    Amling M, Neff L, Tanaka S, Inoue D, Kuida K, Weir E, et al. (1997) Bd-2 lies downstream of parathyroid hormone-related peptide in a signaling pathway that regulates chondrocyte maturation during skeletal development. J Cell Biol 136: 205–13.PubMedCrossRefGoogle Scholar
  6. 6.
    Aubin JE, Triffitt JT (2002) Mesenchymal stem cells and osteoblast differentiation. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of Bone Biology. Academic Press, New York, pp 59–82.CrossRefGoogle Scholar
  7. 7.
    Baldock PA, Sainsbury A, Couzens M, Enriquez RF, Thomas GP, Gardiner EM, et al. (2002) Hypothalamic Y2 receptors regulate bone formation. J Clin Invest 109: 915–21.PubMedGoogle Scholar
  8. 8.
    Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B (1999) Sox9 is required for cartilage formation. Nat Genet 22: 85–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Boskey AL, Gadaleta S, Gundberg C, Doty SB, Ducy P, Karsenty G (1998) Fourier transform infrared micro-spectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone 23: 187–96.PubMedCrossRefGoogle Scholar
  10. 10.
    Chen HL, Demiralp B, Schneider A, Koh AJ, Silve C, Wang CY, et al. (2002) Parathyroid hormone and parathyroid hormone-related protein exert both pro-and anti-apoptotic effects in mesenchymal cells. J Biol Chem 277: 19374–81.PubMedCrossRefGoogle Scholar
  11. Chiang C, Litingtung Y, Harris MP, Simandl BK, Li Y, Beachy PA, et al. (2001) Manifestation of the limb prepattern: limb development in the absence of sonic hedgehog function. Dev Biol 236: 421–35.PubMedCrossRefGoogle Scholar
  12. 11.
    Chiang C, Litingtung Y, Lee E, Young KE, Gorden JL, Westphal H, et al. (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383: 407–13.PubMedCrossRefGoogle Scholar
  13. 12.
    Chung UI, Schipani E, McMahon AP, Kronenberg HM (2001) Indian hedgehog couples chondrogenesis to osteogenesis in endochondral bone development. J Clin Invest 107: 295–304.PubMedCrossRefGoogle Scholar
  14. 13.
    Daluiski A, Engstrand T, Bahamonde ME, Gamer LW, Agius E, Stevenson SL, et al. (2001) Bone morphogenetic protein-3 is a negative regulator of bone density. Nat Genet 27: 84–8.PubMedGoogle Scholar
  15. 14.
    Dougherty KM, Blomme EA, Koh AJ, Henderson JE, Pienta KJ, Rosol TJ, et al. (1999) Parathyroid hormone-related protein as a growth regulator of prostate carcinoma. Cancer Res 59: 6015–22.PubMedGoogle Scholar
  16. 15.
    Drissi H, Luc Q, Shakoori R, Chuva Sousa Lopes S De, Choi JY, Terry A, et al. (2000) Transcriptional autoregulation of the bone related CBFAl/RUNX2 gene. J Cell Physiol 184: 341–50.PubMedCrossRefGoogle Scholar
  17. 16.
    Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, et al. (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100: 197–207.PubMedCrossRefGoogle Scholar
  18. 17.
    Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, et al. (1996) Increased bone formation in osteocalcindeficient mice. Nature 382: 448–52.PubMedCrossRefGoogle Scholar
  19. 18.
    Ducy P, Karsenty G (1995) Two distinct osteoblastspecific cis-acting elements control expression of a mouse osteocalcin gene. Mol Cell Biol 15: 1858–69.PubMedGoogle Scholar
  20. 19.
    Ducy P, Starbuck M, Priemel M, Shen J, Pinero G, Geoffroy V, et al. (1999) A Cbfal-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev 13: 1025–36.PubMedCrossRefGoogle Scholar
  21. 20.
    Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfal: a transcriptional activator of osteoblast differentiation. Cell 89: 747–54.PubMedCrossRefGoogle Scholar
  22. 21.
    Dyson N (1998) The regulation of E2F by pRB-family proteins. Genes Dev 12: 2245–62.PubMedCrossRefGoogle Scholar
  23. 22.
    Erickson JC, Hollopeter G, Palmiter RD (1996) Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y. Science 274: 1704–7.PubMedCrossRefGoogle Scholar
  24. 23.
    Feuerbach D, Loetscher E, Buerki K, Sampath TK, Feyen JH (1997) Establishment and characterization of conditionally immortalized stromal cell lines from a temperature-sensitive T-Ag transgenic mouse. J Bone Miner Res 12: 179–90.PubMedCrossRefGoogle Scholar
  25. 24.
    Foster JW, Dominguez-Steglich MA, Guioli S, Kowk G, Weller PA, Stevanovic M, et al. (1994) Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372: 525–30.PubMedCrossRefGoogle Scholar
  26. 25.
    Friedenstein AJ (1990) Osteogenic stem cells in the bone marrow. In: Heersche JNM, Kanis JA (eds) Bone and Mineral Research/7. Elsevier Science, Amsterdam, pp 243–70.Google Scholar
  27. 26.
    Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395: 763–70.PubMedCrossRefGoogle Scholar
  28. 27.
    Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, et al. (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107: 513–23.PubMedCrossRefGoogle Scholar
  29. 29.
    Gori F, Thomas T, Hicok KC, Spelsberg TC, Riggs BL (1999) Differentiation of human marrow stromal precursor cells: bone morphogenetic protein-2 increases OSF2/CBFA1, enhances osteoblast commitment, and inhibits late adipocyte maturation. J Bone Miner Res 14: 1522–35.PubMedCrossRefGoogle Scholar
  30. 30.
    Grigoriadis AE, Schellander K, Wang ZQ, Wagner EF (1993) Osteoblasts are target cells for transformation in c-fos transgenic mice. J Cell Biol 122: 685–701.PubMedCrossRefGoogle Scholar
  31. 31.
    Gruda MC, van Amsterdam J, Rizzo CA, Durham SK, Lira S, Bravo R (1996) Expression of FosB during mouse development: normal development of FosB knockout mice. Oncogene 12: 2177–85.PubMedGoogle Scholar
  32. 32.
    Henderson JE, Amizuka N, Warshawsky H, Biasotto D, Lanske BM, Goltzman D, et al. (1995) Nucleolar localization of parathyroid hormone-related peptide enhances survival of chondrocytes under conditions that promote apoptotic cell death. Mol Cell Biol 15: 4064–75.PubMedGoogle Scholar
  33. 33.
    Herz J, Strickland DK (2001) LRP: a multifunctional scavenger and signaling receptor. J Clin Invest 108: 779–84.PubMedGoogle Scholar
  34. 34.
    Hogan BL (1996) Bone morphogenetic proteins in development. Curr Opin Genet Dev 6: 432–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Inada M, Yasui T, Nomura S, Miyake S, Deguchi K, Himeno M, et al. (1999) Maturational disturbance of chondrocytes in Cbfal-deficient mice. Dev Dyn 214: 279–90.PubMedCrossRefGoogle Scholar
  36. 36.
    Ito Y (1999) Molecular basis of tissue-specific gene expression mediated by the runt domain transcription factor PEBP2/CBF. Genes Cells 4: 685–96.PubMedCrossRefGoogle Scholar
  37. 37.
    Jilka RL, Weinstein RS, Bellido T, Parfitt AM, Manolagas SC (1998) Osteoblast programmed cell death (apoptosis): modulation by growth factors and cytokines. J Bone Miner Res 13: 793–802.PubMedCrossRefGoogle Scholar
  38. 38.
    Jilka RL, Weinstein RS, Bellido T, Roberson P, Parfitt AM, Manolagas SC (1999) Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J Clin Invest 104: 439–46.PubMedCrossRefGoogle Scholar
  39. 39.
    Jochum W, David JP, Elliott C, Wutz A, Plenk H Jr, Matsuo K, et al. (2000) Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nat Med 6: 980–4.PubMedCrossRefGoogle Scholar
  40. 40.
    Jones JI, Clemmons DR (1995) Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16: 3–4.PubMedGoogle Scholar
  41. 41.
    Kanzler B, Kuschert SJ, Liu YH, Mallo M (1998) Hoxa-2 restricts the chondrogenic domain and inhibits bone formation during development of the branchial area. Development 125: 2587–97.PubMedGoogle Scholar
  42. 42.
    Karaplis AC (2002) Embryonic development of bone and the molecular regulation of intramembranous and endochondral bone formation. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of Bone Biology. Academic Press, New York, pp 33–58.CrossRefGoogle Scholar
  43. 43.
    Karaplis AC, Luz A, Glowacki J, Bronson RT, Tybulewicz VL, Kronenberg HM, et al. (1994) Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev 8: 277–89.PubMedCrossRefGoogle Scholar
  44. 44.
    Karsenty G (2000) How many factors are required to remodel bone? Nat Med 6: 970–1.PubMedCrossRefGoogle Scholar
  45. 45.
    Kato M, Patel MS, Levasseur R, Lobov I, Chang BH, Glass DA, et al. (2002) Cbfal-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in LrpS, a Wnt coreceptor. J Cell Biol 157: 303–14.PubMedCrossRefGoogle Scholar
  46. 46.
    Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, et al. (1997) Targeted disruption of Cbfal results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89: 755–64.PubMedCrossRefGoogle Scholar
  47. 47.
    Lane NE, Sanchez S, Modin GW, Genant HK, Pierini E, Arnaud CD (1998) Parathyroid hormone treatment can reverse corticosteroid-induced osteoporosis. Results of a randomized controlled clinical trial. J Clin Invest 102: 1627–33.Google Scholar
  48. 48.
    Lanske B, Karaplis AC, Lee K, Luz A, Vortkamp A, Pirro A, et al. (1996) PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 273: 663–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Lee B, Thirunavukkarasu K, Zhou L, Pastore L, Baldini A, Hecht J, et al. (1997) Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nat Genet 16: 307–10.PubMedCrossRefGoogle Scholar
  50. 50.
    Levi G, Topilko P, Schneider-Maunoury S, Lasagna M, Mantero S, Cancedda R, et al. (1996a) Defective bone formation in Krox-20 mutant mice. Development 122: 113–20.PubMedGoogle Scholar
  51. 51.
    Levi G, Topilko P, Schneider-Maunoury S, Lasagna M, Mantero S, Pesce B, et al. (1996b) Role of Krox-20 in endochondral bone formation. Ann N Y Acad Sci 785: 288–91.PubMedCrossRefGoogle Scholar
  52. 52.
    Lewis JM, Baskaran R, Taagepera S, Schwartz MA, Wang JY (1996) Integrin regulation of c-Abl tyrosine kinase activity and cytoplasmic-nuclear transport. Proc Natl Acad Sci U S A 93: 15174–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Li B, Boast S, de los Santos K, Schieren I, Quiroz M, Teitelbaum SL, et al. (2000) Mice deficient in Abl are osteoporotic and have defects in osteoblast maturation. Nat Genet 24: 304–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Li J, Tsuji K, Komori T, Miyazono K, Wrana JL, Ito Y, et al. (1998) Smad2 overexpression enhances Smad4 gene expression and suppresses CBFA1 gene expression in osteoblastic osteosarcoma ROS17/2.8 cells and primary rat calvaria cells. J Biol Chem 273: 31009–15.PubMedCrossRefGoogle Scholar
  55. 55.
    Little RD, Carulli JP, Mastro RG Del, Dupuis J, Osborne M, Folz C, et al. (2002) A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 70: 11–19.PubMedCrossRefGoogle Scholar
  56. 56.
    Liu W, Toyosawa S, Furuichi T, Kanatani N, Yoshida C, Liu Y, et al. (2001) Overexpression of Cbfal in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures. J Cell Biol 155: 157–66.PubMedCrossRefGoogle Scholar
  57. 57.
    Liu Z, Xu J, Colvin JS, Ornitz DM (2002) Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. Genes Dev 16: 859–69.PubMedCrossRefGoogle Scholar
  58. 58.
    Manolagas SC, Weinstein RS (1999) New developments in the pathogenesis and treatment of steroid-induced osteoporosis. J Bone Miner Res 14: 1061–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Mao J, Wang J, Liu B, Pan W, Farr GH, Flynn C, et al. (2001) Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol Cell 7: 801–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Marigo V, Davey RA, Zuo Y, Cunningham JM, Tabin CJ (1996) Biochemical evidence that patched is the Hedgehog receptor. Nature 384: 176–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Matsuda S, Kawamura-Tsuzuku J, Ohsugi M, Yoshida M, Emi M, Nakamura Y, et al. (1996) Tob, a novel protein that interacts with p185erbB2, is associated with anti-proliferative activity. Oncogene 12: 705–13.PubMedGoogle Scholar
  62. 62.
    McLarren KW, Lo R, Grbavec D, Thirunavukkarasu K, Karsenty G, Stifani S (2000) The mammalian basic helix loop helix protein HES-1 binds to and modulates the transactivating function of the runt-related factor Cbfal. J Biol Chem 275: 530–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Miyama K, Yamada G, Yamamoto TS, Takagi C, Miyado K, Sakai M, et al. (1999) A BMP-inducible gene, dlx5, regulates osteoblast differentiation and mesoderm induction. Dev Biol 208: 123–33.PubMedCrossRefGoogle Scholar
  64. 64.
    Moitra J, Mason MM, Olive M, Krylov D, Gavrilova 0, Marcus-Samuels B, et al. (1998) Life without white fat: a transgenic mouse. Genes Dev 12: 3168–81.PubMedCrossRefGoogle Scholar
  65. 65.
    Mundlos S, Otto F, Mundlos C, Mulliken JB, Aylsworth AS, Albright S, et al. (1997) Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89: 773–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, et al. (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108: 17–29.PubMedCrossRefGoogle Scholar
  67. 67.
    Nusse R (1996) Patching up Hedgehog. Nature 384: 119–20.PubMedCrossRefGoogle Scholar
  68. 68.
    Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, et al. (1997) Cbfal, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89: 765–71.PubMedCrossRefGoogle Scholar
  69. 69.
    Reseland JE, Syversen U, Bakke I, Qvigstad G, Eide LG, Hjertner O, et al. (2001) Leptin is expressed in and secreted from primary cultures of human osteoblasts and promotes bone mineralization. J Bone Miner Res 16: 1426–33.PubMedCrossRefGoogle Scholar
  70. 70.
    Robey PG, Young MF, Flanders KC, Roche NS, Kondaiah P, Reddi AH, et al. (1987) Osteoblasts synthesize and respond to transforming growth factor-type beta (TGFbeta) in vitro. J Cell Biol 105: 457–63.PubMedCrossRefGoogle Scholar
  71. 71.
    Sabatakos G, Sims NA, Chen J, Aoki K, Kelz MB, Amling M, et al. (2000) Overexpression of DeltaFosB transcription factor(s) increases bone formation and inhibits adipogenesis. Nat Med 6: 985–90.PubMedCrossRefGoogle Scholar
  72. 72.
    Sampath TK, Coughlin JE, Whetstone RM, Banach D, Corbett C, Ridge RJ, et al. (1990) Bovine osteogenic protein is composed of dimers of OP-1 and BMP-2A, two members of the transforming growth factor-beta superfamily. J Biol Chem 265: 13198–205.PubMedGoogle Scholar
  73. 73.
    Satokata I, Ma L, Ohshima H, Bei M, Woo I, Nishizawa K, et al. (2000) Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat Genet 24: 391–5.PubMedCrossRefGoogle Scholar
  74. 74.
    Sellers WR, Novitch BG, Miyake S, Heith A, Otterson GA, Kaye FJ, et al. (1998) Stable binding to E2F is not required for the retinoblastoma protein to activate transcription, promote differentiation, and suppress tumor cell growth. Genes Dev 12: 95–106.PubMedCrossRefGoogle Scholar
  75. 75.
    Spinella-Jaegle S, Rawadi G, Kawai S, Gallea S, Faucheu C, Mollat P, et al. (2001a) Sonic hedgehog increases the commitment of pluripotent mesenchymal cells into the osteoblastic lineage and abolishes adipocytic differentiation. J Cell Sci 114: 2085–94.PubMedGoogle Scholar
  76. 76.
    Spinella-Jaegle S, Roman-Roman S, Faucheu C, Dunn FW, Kawai S, Gallea S, et al. (200 lb) Opposite effects of bone morphogenetic protein-2 and transforming growth factor-betal on osteoblast differentiation. Bone 29: 323–30.Google Scholar
  77. 77.
    Stein GS, Lian JB, Montecino M, van Wijnen AJ, Stein JL, Javed A, et al. (2002) Involvement of nuclear architecture in regulating gene expression in bone cells. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of Bone Biology. Academic Press, New York, pp 169–88.CrossRefGoogle Scholar
  78. 78.
    St-Jacques B, Hammerschmidt M, McMahon AP (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 13: 2072–86.PubMedCrossRefGoogle Scholar
  79. 79.
    Stone DM, Hynes M, Armanini M, Swanson TA, Gu Q, Johnson RL, et al. (1996) The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 384: 129–34.PubMedCrossRefGoogle Scholar
  80. 80.
    Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, et al. (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111: 305–17.PubMedCrossRefGoogle Scholar
  81. 81.
    Thomas DM, Carty SA, Piscopo DM, Lee JS, Wang WF, Forrester WC, et al. (2001) The retinoblastoma protein acts as a transcriptional coactivator required for osteogenic differentiation. Mol Cell 8: 303–16.PubMedCrossRefGoogle Scholar
  82. 82.
    Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL (1999) Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 140: 1630–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Tovar Sepulveda VA, Shen X, Falzon M (2002) Intracrine PTHrP protects against serum starvation-induced apoptosis and regulates the cell cycle in MCF-7 breast cancer cells. Endocrinology 143: 596–606.CrossRefGoogle Scholar
  84. 84.
    Tribioli C, Lufkin T (1999) The murine Bapxl homeobox gene plays a critical role in embryonic development of the axial skeleton and spleen. Development 126: 5699–711.PubMedGoogle Scholar
  85. 85.
    Ueta C, Iwamoto M, Kanatani N, Yoshida C, Liu Y, Enomoto-Iwamoto M, et al. (2001) Skeletal malformations caused by overexpression of Cbfal or its dominant negative form in chondrocytes. J Cell Biol 153: 87–100.PubMedCrossRefGoogle Scholar
  86. 86.
    Uusitalo H, Hiltunen A, Ahonen M, Gao TJ, Lefebvre V, Harley V, et al. (2001) Accelerated up-regulation of LSox5, Sox6, and Sox9 by BMP-2 gene transfer during murine fracture healing. J Bone Miner Res 16: 1837–45.PubMedCrossRefGoogle Scholar
  87. 87.
    Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ (1996) Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273: 613–22.PubMedCrossRefGoogle Scholar
  88. 88.
    Wagner T, Wirth J, Meyer J, Zabel B, Held M, Zimmer J, et al. (1994) Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 79: 1111–20.PubMedCrossRefGoogle Scholar
  89. 89.
    Walsh CA, Birch MA, Fraser WD, Lawton R, Dorgan J, Walsh S, et al. (1995) Expression and secretion of parathyroid hormone-related protein by human bone-derived cells in vitro: effects of glucocorticoids. J Bone Miner Res 10: 17–25.PubMedCrossRefGoogle Scholar
  90. 90.
    Weinstein RS (2001) Glucocorticoid-induced osteoporosis. Rev Endocr Metab Disord 2: 65–73.PubMedCrossRefGoogle Scholar
  91. 91.
    Yamaguchi A, Komori T, Suda T (2000) Regulation of osteoblast differentiation mediated by bone morpho-genetic proteins, hedgehogs, and Cbfa1. Endocr Rev 21: 393–411.PubMedCrossRefGoogle Scholar
  92. 92.
    Yoshida Y, Tanaka S, Umemori H, Minowa O, Usui M, Ikematsu N, et al. (2000) Negative regulation of BMP/Smad signaling by Tob in osteoblasts. Cell 103: 1085–97.PubMedCrossRefGoogle Scholar
  93. 93.
    Zhang H, Hu G, Wang H, Sciavolino P, Iler N, Shen MM, et al. (1997) Heterodimerization of Msx and Dlx homeoproteins results in functional antagonism. Mol Cell Biol 17: 2920–32.PubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2004

Authors and Affiliations

  • Prasanna Bukka
  • Marc D. McKee
  • Andrew C. Karaplis

There are no affiliations available

Personalised recommendations