Skip to main content

The Pediatric Hip

  • Chapter
  • 893 Accesses

Abstract

The disease formerly known as Congenital Dislocation of the Hip has more recently been described as Developmental Dislocation (or Dysplasia) of the Hip. It is not clear whether the causes of this disease are congenital, developmental or both. True congenital dislocation is often intractable, as it involves severe dislocation and is accompanied by considerable anomalies. In true congenital dislocation, the acetabulum is remarkably shallow and steep, and antetorsion of the femur is severe. In developmental dislocation, environmental factors have more influence on the occurrence of the dislocation than congenital ones. The kind of diaper is one of the most important factors. The prevalence of dislocation is high in some colder areas. In such areas, diapers or clothes are often fitted down to the knee with the hip in the extended position to keep the children from the cold.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vartan CK. The behaviour of the foetus in utero with special reference to the incidence of breech presentation at term. J Obstet Gynec Brit Emp 1945;52:417–34.

    Article  CAS  Google Scholar 

  2. Tompkins P. An inquiry into the cause of breech presentation. Am J Obstet Gynec 1946;51:595–606.

    PubMed  CAS  Google Scholar 

  3. Wilkinson JA. A postnatal survey for congenital dislocation of the hip. J Bone Joint Surg 1972;54B:40–9.

    Google Scholar 

  4. Michelson JE, Langenskiöld A. Dislocation or subluxation of the hip, regular sequels of immobilization of the knee in extension in young rabbits. J Bone Joint Surg 1972;54A:1177–86.

    Google Scholar 

  5. Michèle AA. Iliopsoas. Springfield IL: Charles C Thomas, 1962.

    Google Scholar 

  6. McKibbin B. Anatomical factors in the stability of the hip joint in the newborn. J Bone Joint Surg 1970; 52B:148–59.

    Google Scholar 

  7. Yamamuro T, Hama H, Takeda T, Shikata J, Sanada H. Sexual hormone in the experimental hip dislocation. Cent Jpn J Orthop Traumat 1976;19:770–1.

    Google Scholar 

  8. Otani T. Studies on photoelastic stress analysis of congenital dislocation of the hip. J Jpn Orthop Assoc 1964;37:1001–26.

    Google Scholar 

  9. Saito S, Kuroki Y, Ohgiya H. Obara S, Hyashi J, Yamazaki K. Changes in the alignment of the lower extremities in children. A study of the cases with fractures of the femur and congenital dislocation of the hip. J Jpn Paed Orthop Assoc 1993;3:148–56.

    Google Scholar 

  10. Schneider B, Laubenberger J, Jemlich S, Groene K, Weber HM, Langer M. Measurement of femoral antetorsion and tibial torsion by magnetic resonance imaging. Br J Radiol 1997;70:575–9.

    PubMed  CAS  Google Scholar 

  11. Drehmann F, Becker W. A simple clinical investigation method for the approximative rapid determination of the antetorsional angle of the neck of femur. Z Orthop 1980;118:236–40.

    Article  PubMed  CAS  Google Scholar 

  12. Grote R, Elgeti H, Saure D. Determination of the antetorsional angle at the femur with axial computer tomography. Rontgenblatter 1980;33:31–42.

    PubMed  CAS  Google Scholar 

  13. Tomczak RJ, Guenther KP, Rieber A, Mergo P, Ros PR, Brambs HJ. MR imaging measurement of the femoral antetorsional angle as a new technique: comparison with CT in children and adults. AJR Am J Roentgenol 1997;168:791–4.

    Article  PubMed  CAS  Google Scholar 

  14. Haspl M, Bilic R. Assessment of femoral neck-shaft and antetorsion angles. Int Orthop 1996;20:363–6.

    Article  PubMed  CAS  Google Scholar 

  15. Bruckl R, Grunert S, Rosemeyer B. Roentgenologic determination of the actual femoral neck-shaft and antetorsion angle. 2: Alternatives to the Rippstein and Müller procedure. Radiologe 1986;26:305–9.

    PubMed  CAS  Google Scholar 

  16. Wissing H, Spira G. Determination of rotational defects of the femur by computer tomographic determination of the antetorsion angle of the femoral neck. Unfallchirurgie 1986;12:1–11.

    Article  PubMed  CAS  Google Scholar 

  17. Günther KP, Kessler S, Tomczak R, Pfeifer P, Puhl W. Femoral anteversion: significance of clinical methods and imaging techniques in the diagnosis in children and adolescents. Z Orthop Ihre Grenzgeb 1996;134:295–301.

    Article  PubMed  Google Scholar 

  18. Gormand E, Barrai F, Roussille M, Bochu M, Fournet-Fayard J, Kholer R. Comparison between ultrasonic and x-ray computed tomographic measurements of femoral antetorsion in children. J Radiol 1985;66:789–92.

    PubMed  CAS  Google Scholar 

  19. Clarac JP, Pries P, Laine M, Richer JP, Freychet H, Goubault F et al. Measurement of antetorsion of the femoral neck by ultrasonics. Comparison with x-ray computed tomography. Rev Chir Orthop 1985;71: 365–8.

    PubMed  CAS  Google Scholar 

  20. Badgley CE. Correction of clinical and anatomical facts leading to a conception of the etiology of congenital hip dysplasias. J Bone Joint Surg 1943;25:503.

    Google Scholar 

  21. Badgley CE. Etiology of congenital dislocation of the hip. J Bone Joint Surg 1949;31A:341.

    PubMed  CAS  Google Scholar 

  22. Lanz T, Mayet A. Die Gelenkkorper des menschlichen Hüftgelenks in der progredienten Phase ihrer umwegigen Ausformung. Z Anat 1953; 117:317.

    Article  Google Scholar 

  23. Michèle AA. Iliopsoas. Thomas CC, editor. Springfield, IL, 1962.

    Google Scholar 

  24. Le Damany P. Die angeborene Hüftgelenkverrenkung. Ihre Ursachen: ihre Mechanismus: ihre arthropologis-che Bedeutung. Z. Orthop Chir 1908;21:129.

    Google Scholar 

  25. Somerville EW. Development of congenital dislocation of the hip. J Bone Joint Surg 1953;40A:803.

    Google Scholar 

  26. Chandler F. Anatomical study of congenital dislocation of the hip. J Bone Joint Surg 1929; 11:546.

    Google Scholar 

  27. Shands AR Jr, Steele MK. Torsion of the femur. A follow-up report on the use of the Dunlop method for its detamination. J Bone Joint Surg. 1958;40A:1147.

    Google Scholar 

  28. Sylkin NN. Developmental tendency of the femur head following femoral head necrosis due to conservative treatment of a dislocated hip (2nd report). Z Orthop Ihre Grenzgeb 1995;133:367–73.

    Article  PubMed  CAS  Google Scholar 

  29. Lingg G, Nebel G, Thomas W, Hering L. Value of computed tomography in congenital hip dysplasia and hip luxation. Rontgenblatter 1983;36:407–13.

    PubMed  CAS  Google Scholar 

  30. Saito S, Kuroki Y, Uchida T, Mori Y. Experimentelle Untersuchungen über die Entstehung der Antetorsion am Femur. Z Orthop 1980;118:612.

    Google Scholar 

  31. Saito S, Kuroki Y, Uchida T. An experimental study on the change of the femoral antetorsion. J Jpn Orthop Assoc 1978;52:1185.

    Google Scholar 

  32. Wilson PD, Jacob B, Schecter L. Slipped capital femoral epiphysis. J Bone Joint Surg 1965;47A:1128–45.

    Google Scholar 

  33. Imhäuser G. Die jugendliche Hüftkopflösung bei steilem Schenkelhals. Z. Orthop 1959;91:403–13.

    Google Scholar 

  34. Harris R, Hobson KW. The endocrine basis for slipping of the upper femoral epiphysis. J Bone Joint Surg 1950;32B:5–11.

    Google Scholar 

  35. Kim WC. Biomechanical properties of growth plate. J Jpn Paed Orthop Ass 1996;6:128–32.

    Google Scholar 

  36. Nakada D. Torsional strength of the epiphyseal plate and fracture patterns with aging, three-dimensional analysis with SEM. J Jpn Orthop Assoc 1993;67:1045–54.

    CAS  Google Scholar 

  37. Morscher E. Zur Pathogenese der Epiphyseolysis capitis femoris. Archiv für orthopädische und Unfall-Chirurgie 1961;53:331–43.

    Article  PubMed  CAS  Google Scholar 

  38. Yoshida M, Kim WC, Arai Y, Inoue N, Watabe K, Takai N et al. The effect of maturation on dynamic visco-elastic properties of epiphyseal plate in rabbit. J Jpn Clin Biomecha 1994;15:147–50.

    Google Scholar 

  39. Bright RW, Virginia R, Burstein AH. Epiphyseal Plate Cartilage. J Bone Joint Surg 1974;56A:688–703.

    Google Scholar 

  40. Chung SM, Batterman SC, Brighton CT. Shear strength of the human femoral capital epiphyseal plate. J Bone Joint Surg 1976;58A:94–103.

    Google Scholar 

  41. Amadio P, Ehrlich MG, Mankin HJ. Matrix synthesis in high density cultures of bovine epiphyseal chondrocytes. Connect Tissue Res 1983;11:11–19.

    Article  PubMed  CAS  Google Scholar 

  42. Salter RB, Harris WR. Injuries involving the epiphyseal plate. J Bone Joint Surg 1963;45A:587–622.

    Google Scholar 

  43. Brasher HR Jr. Epiphyseal fractures. A microscopic study of the healing process in rat. J Bone Joint Surg 1959;41A:1055–4064.

    Google Scholar 

  44. Hurley JM, Betz RR, Loder RT, Davidson RS, Alburger PD, Steel HH. Slipped capital femoral epiphysis. The prevalence of late contralateral slip. J Bone Joint Surg 1996;78A:226–30.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag London

About this chapter

Cite this chapter

Saito, S., Kusaba, A. (2004). The Pediatric Hip. In: Poitout, D.G. (eds) Biomechanics and Biomaterials in Orthopedics. Springer, London. https://doi.org/10.1007/978-1-4471-3774-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3774-0_31

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3776-4

  • Online ISBN: 978-1-4471-3774-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics